
 

A Brief Overview of ChatGPT: The History, Status
Quo and Potential Future Development

Tianyu Wu , Shizhu He , Jingping Liu , Siqi Sun , Kang Liu , Qing-Long Han , Fellow, IEEE, and
Yang Tang , Senior Member, IEEE

 
   Abstract—ChatGPT,  an  artificial  intelligence  generated  con-
tent  (AIGC)  model  developed  by  OpenAI,  has  attracted  world-
wide  attention  for  its  capability  of  dealing  with  challenging  lan-
guage understanding and generation tasks in the form of conver-
sations.  This  paper  briefly  provides  an  overview  on  the  history,
status  quo  and  potential  future  development  of  ChatGPT,  help-
ing  to  provide  an  entry  point  to  think  about  ChatGPT.  Specifi-
cally,  from the  limited  open-accessed  resources,  we  conclude  the
core  techniques  of  ChatGPT,  mainly  including  large-scale  lan-
guage  models,  in-context  learning,  reinforcement  learning  from
human feedback and the key technical steps for developing Chat-
GPT. We further analyze the pros and cons of ChatGPT and we
rethink the duality of ChatGPT in various fields. Although it has
been widely acknowledged that ChatGPT brings plenty of oppor-
tunities  for  various  fields,  mankind  should  still  treat  and  use
ChatGPT  properly  to  avoid  the  potential  threat,  e.g.,  academic
integrity  and  safety  challenge.  Finally,  we  discuss  several  open
problems as the potential development of ChatGPT.
    Index Terms—AIGC,  ChatGPT,  GPT-3,  GPT-4,  human feedback,
large language models.
  

I.  Introduction

A RTIFICIAL  intelligence  generated  content  (AIGC),
which is one of the most fascinating frontier technology,

refers to that users can use AI to create contents (e.g., images,
text,  and  videos)  automatically  according  to  their  personal-
ized  requirements  [1]−[3].  With  the  iterative  development  of
AI  algorithms  and  network  structures  [4],  [5],  significant
progress has been made in AIGC. Generative adversarial net-
work (GAN) [6], [7], contrastive language-image pre-training
(CLIP) [8], diffusion model [9], [10] and multimodal genera-

tion  [11],  [12]  are  core  technologies  for  various  fields  of
AIGC  so  that  contents  with  high  quality  can  be  generated
automatically.  Moreover,  with  the  advancement  of  GPU  and
the  increase  in  computational  power,  large  scale  deep  net-
works  with  huge  amounts  of  parameters  are  trained  so  that
more  information  can  be  learned  to  deal  with  general  down-
stream tasks with better performance [13]. Based on the above
technological  developments,  in  the  year  of  2022,  various  of
AIGC  products  were  developed  and  iterated  by  the  world’s
leading  technology  companies,  for  example  DALL-E-2  of
OpenAI [14] can generate images of high-quality with giving
specific  descriptions  and  Meta  proposes  Make-A-Video  [15]
to directly translate texts  to videos.  In the end of 2022,  Ope-
nAI  released  the  public  version  of  ChatGPT,  which  further
attracts  worldwide  attention  on  perfectly  responding  to  any
human  requests  described  in  natural  language.  ChatGPT  has
surpassed 100 million monthly active users till the end of Jan-
uary  2023,  just  two months  after  its  launch,  according to  the
report  of  UBS1.  In  this  paper,  we  carry  out  several  in-depth
thoughts and discussions on ChatGPT.

ChatGPT  is  an  intelligent  chatting  robot  which  is  able  to
provide  a  detailed  response  according  to  an  instruction  in  a
prompt.  As a member of AIGC, ChatGPT has shown power-
ful  functions  on  various  language  understanding  and  genera-
tion  tasks  such  as  multilingual  machine  translation,  code
debugging, stroy writing, admitting mistakes and even reject-
ing inappropriate requests according to the official statement.
Unlike  previous  chatting  robots,  ChatGPT is  able  to  remem-
ber  what  the  user  has  said  earlier  in  the  conversation  which
helps  for  continuous  dialogue  [16].  In  March  2023,  with  the
publication of GPT-4 created by OpenAI [17], ChatGPT also
has  enjoyed  a  strong  update  with  further  functions.  Specifi-
cally, users now can input texts and visual images in parallel,
thus  more  challenging  multimodal  tasks  can  be  completed
such  as  image  captioning,  chart  reasoning,  paper  summariz-
ing2 (as shown in Fig. 1).

ChatGPT,  with  so  many  strong  functions,  is  an  integration
of  multiple  technologies  such  as  deep  learning,  unsupervised
learning,  instruction  fine-tuning,  multi-task  learning,  in-con-
text  learning  and  reinforcement  learning.  It  is  built  upon  the
initial  GPT  (Generative  pre-trained  Transformer)  model,
which has been iteratively updated from GPT-1 to GPT-4 (as
shown  in Table I).  GPT-1  [18],  developed  in  2018,  is  firstly
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dedicated  to  train  a  generative  language  model  based  on  a
Transformer  framework  via  unsupervised  learning  [19]–[21],
and the pretrained model is further fine-tuned on downstream
tasks.  GPT-2,  developed  in  2019  [22],  mainly  introduces  the
idea  of  multi-task  learning  [23]  with  more  network  parame-
ters and data than GPT for training, so that the pretrained gen-
erative  language  model  can  be  generalized  to  most  of  the
supervised  subtasks  without  further  fine-tuning.  To  further
improve the model performance on few-shot or zero-shot [24]
settings,  GPT-3  [25]  combines  meta-learning  [26],  [27]  with
in-context  learning  [28]  so  that  the  generalization  ability  of
the model has been greatly improved with surpassing most of
the existing methods on various downstream tasks. Moreover,
the parameter scale of GPT-3 has increased by 100 times than
GPT-2 and it is the first language model to surpass a parame-
ter scale of 100 billion. When it comes to the pilot version of
ChatGPT  (InstructGPT,  also  known  as  one  of  the  derivative
version  of  GPT3.5  series  models),  the  researchers  use  rein-
forcement  learning  with  human  feedback  (RLHF)  to  incre-
mentally  train  the  GPT-3  model  [29]  so  that  the  model  can
better follow and align with the user’s intent. Finally, when it
comes  to  GPT-4,  a  large  multimodal  model  with  accepting
image  and  text  inputs  and  emitting  text  outputs,  ChatGPT
exhibits  human-level  performance on arious  professional  and
academic benchmarks [17].

In  addition  to  the  quick  update  on  techniques,  the  enlarge-
ment of model capacity and the number of data for pre-train-

ing further  helps  the  model  to  better  understand the  meaning
and  intent  behind  a  given  piece  of  text.  The  parameters  and
the data  of  GPT-1 only reach 117 million and 5  GB,  respec-
tively, while in GPT-3 the number increases to 175 billion and
45  TB.  Even  if  the  details  of  GPT-4  have  not  been  publicly
released, it  is  expected that the parameters and data may still
have  a  huge  increase.  In  this  way,  the  success  of  ChatGPT
relies  on multi  aspects  of  supports  such as  financial  backing,
computational power, data resources. Till now, ChatGPT/GPT-
4 has shown promising performance as a general purpose mul-
timodal  task-solver  [30],  which  has  been  widely  used  in  the
field of we-media, data analysis, etc. However, the strong cre-
ativity of ChatGPT is a double-edged sword, especially in the
filed of education and science [31],  [32].  How to prevent the
cheating  or  plagiarism and  how to  avoid  the  abuse  of  strong
ChatGPT are still important topics for further discussion.

The aim of this paper is to provide a brief overview on the
history,  status quo and potential  future development of  Chat-
GPT,  helping  to  provide  an  entry  point  to  think  about  Chat-
GPT. Main contributions are as follows:

1)  Core  techniques  of  ChatGPT,  mainly  including  pre-
trained large-scale language models, in-context learning, rein-
forcement learning from human feedback and the key techni-
cal steps for developing ChatGPT are specified.

2) The pros and cons of ChatGPT and the duality of Chat-
GPT in various field are provided.

3)  Several  open  problems  on  potential  research  trends  of

 

TABLE I 

Comparative Analysis of GPT-1, GPT-2, GPT-3 and GPT-4

GPT-1 GPT-2 GPT-3 GPT-4

Released date June 2018 February 2019 May 2020 March 2023

Model parameters 117 million 12 layers
768 dimensions

1.5 billion 48 layers
1600 dimensions

175 billion 96 layers
12 888 dimensions Unpublished

Context window 512 tokens 1024 tokens 2048 tokens 8195 tokens

Pre-training data size About 5 GB 40 GB 45 TB Unpublished

Source of data BooksCorpus, Wikipedia WebText Common Crawl, etc. Unpublished

Learning target Unsupervised learning Multi-task learning In-context learning Multimodal learning
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Fig. 1.     Strong  function  of  AIGC,  including  text-to-text  generation,  visual-to-text  generation  and  further  multimodal  generation.  For  ChatGPT of  OpenAI,
which combines text and visual images as input, can handle various of language and visual tasks. Cases are adapted from [1], [3], [11], [17].
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ChatGPT are discussed.
In Section II, we delve into the core techniques of ChatGPT.

In Section III, we discuss the advantages and disadvantages of
the ChapGPT. In Section IV, we present the potential impact
of ChatGPT across various social fields. In Section V, we con-
sider the future research trends of ChatGPT. Finally, a simple
conclusion is conducted in Section VI.  

II.  Important Technologies Behind the ChatGPT

Although the technical details (including architecture, hard-
ware, dataset construction and training method, or similar) of
GPT-4 has not been shared, the main techniques of GPT-4 are
still similar to GPT-3/GPT-3.5 [17]. In this way, we can only
analyze it based on the public information and its twin model,
InstructGPT [29]. First, we introduce the pre-trained language
model, which is the foundation technology of ChatGPT. Then,
we introduce the in-context learning that models general tasks
with a self-learning paradigm, we also append the novel tech-
nologies  of  chain-of-thought  prompting  and  instruction  fine-
tuning into this  subsection.  Next,  we introduce the reinforce-
ment learning from human feedback, which can continuously
optimize  the  dialogue  model.  Finally,  we  introduce  the  three
main  steps  in  the  implementation  of  ChatGPT/InstructGPT
with public information: supervised fine-tuning (SFT), reward
modeling (RM) and dialogue-oriented RLHF.  

A.  Pre-Trained Language Model

P(S ) = P(w1,w2, . . . ,wn)
S n

P(wi, ..wn|w1, . . . ,wi−1)

Language  models  are  statistical  models  that  describe  the
probability  distribution  of  natural  language  [33].  It  is  dedi-
cated  to  estimating  the  probability  of  a  given  sentence  (e.g.,

 used  to  compute  the  probability  of
the sentence  containing  words), or the probability of gen-
erating  other  contents  given  a  part  of  the  sentence  (e.g.,

 used to compute the probability of pre-
dicting  the  content  of  the  next  part  given  the  content  of  the
previous part of the sentence), which is the core task of natu-
ral language processing and can be used on almost all  down-
stream NLP tasks.

P(wi|wi−1, . . . ,wi−(n−1)) =
C(wi−1,...,wi−(n−1))

C(wi−1,...,wi−(n−1),wi)

Different  modeling  methods  of  statistical  language  models
denote  the  technical  level  of  natural  language  processing.  In
the  early  n-gram  language  model  (N-gram  LM),  the  condi-
tional probability is estimated by the frequency statistics of n-
grams .  It  can  only
consider  a  fixed  length  (window  size)  of  word  sequences
based on the Markov assumption, and the probability estima-
tion  of  language  model  is  inaccurate  due  to  the  cures  of
dimensionality with symbol combinations. N-gram LM drives
the development of information retrieval technology based on
keyword  search  and  document  relevance  computation.  The
neural  language  model  (NLM) [34],  [35]  started  in  2010  has
driven  researchers  to  model  complex  natural  language  and
multiple tasks [36], [37] with a wide range of deep neural net-
work structures such as multilayer perceptron (MLP), convo-
lutional  neural  network  (CNN)  and  recurrent  neural  network
(RNN),  and  thus  formed  representative  static  language  mod-
els such as word2vec [38], [39] and RNNLM [40], [41]. NLM
utilizes  low-dimensional  embedding  to  represent  words  and

their  composition,  and  realizes  the  prediction  of  conditional
probability through the calculation of neural network.

Since 2018, the pre-trained language models (PLM), which
utilize  self-supervised  learning  over  raw  large-scale  texts,
have received more and more attention [42]. And it promotes
the birth and development of the two-stage learning paradigm
of  pre-training  and  fine-tuning.  For  example,  the  relevant
models of ELMo [43], BERT [44] and GPT-3 [25] have won
the  best  paper  award  of  NAACL  2018,  NAACL  2019  and
NeurIPS  2020,  respectively.  PLM  learns  general  language
models  on  large-scale  texts  based on self-learning tasks  such
as masked word prediction [44], sequence recognition of sen-
tences, text filling in the blank [45], and text generation [2]. It
not  only  improves  the  semantic  description  of  words  from
static representation to context-aware dynamic representation,
but  also  provides  a  unified  modeling  framework  for  NLP
tasks.

x1x2 x3x4 x3
x5

x1x2 x3x4
x1x2x3x4x5 x1x2x3x4x5

At present, there are three typical model structures of PLM,
autoregressive  LM,  autoencoding  LM,  and  hybrid  LM  (as
shown  in Fig. 2).  Their  representative  models  are  GPT  [18],
BERT [44]  and T5 [1],  respectively.  Autoregressive  LM is  a
standard language model,  which adopts decoder-only manner
of  language  modeling  with  one-way  language  encoding-
decoding and token-by-token prediction of words. Autoencod-
ing LM randomly masks the words in the sentence, and utiliz-
ing  bidirectional  encoding,  and  then  predicts  the  masked
words  based  on  the  context  encoding  information  (e.g.,  take
the input “[CLS] [M] [M]” and predict the words “ ”
and “ ” on  the  masked  position  marked  by “[M]”).  Hybrid
LM combines the two methods above. After randomly mask-
ing the words in the sentence and bidirectional encoding, input
the  previous  text  in  one  direction  and  predict  the  subsequent
words step by step (e.g., take the input “[CLS] [M] [M]”
and “[CLS] ” and  gradually  output “
[SEP]”).  Since  BERT  released  by  Google  has  refreshed  the
best  record  of  11  NLP  tasks  at  the  beginning,  and  GPT-2’s
performance  on  typical  NLP  tasks  is  not  better  than  BERT,
BERT  and  its  autoencoding  pre-training  methods  have  been
followed  by  the  vast  majority  of  academia  and  industry
[46]−[52].

Comparatively,  with  the  use  of  the  best  neural  network
structure Transformer [53] at present, OpenAI still adheres to
the  autoregressive  method  and  continues  to  release  GPT-1
[18],  GPT-2  [22],  GPT-3  [25]  and  GPT-4  [17]  (as  shown  in
Table I). GPT-1 first learns a general language model on unla-
beled  raw  texts,  and  then  fine-tunes  it  according  to  specific
tasks.  Although  GPT-1  has  some  effect  on  NLP  tasks  that
have not been fine-tuned, its generalization ability is far lower
than  fine-tuned  models  on  supervised  tasks.  GPT-2  does  not
carry  out  different  model  framework  with  GPT-1  but  uses
larger network parameters and learned on more datasets. GPT-
3 follows the structure of GPT-2, but has made great improve-
ment in model capacity. Surprisingly, the GPT-3 shows excel-
lent  performance  in  many  text  generation  tasks  such  as
machine  translation,  question  answering,  dialogue,  reading
comprehension  and  story  generation.  In  fact,  it  is  difficult  to
distinguish  the  text  generated  by  GPT-3  and  written  by
humans. Moreover, GPT-3 easily supports zero-shot and few-
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shot learning scenarios [54]. Since then, the pre-trained model
has  entered  the  era  of  large-scale  parameters  (also  known  as
large  language  model  [55]  or  foundation  model  [56]).  Build-
ing  on  the  success  of  GPT-3,  OpenAI  has  continued  to
develop  multiple  GPT-3.5  series  models  such  as  Code-
davinci-001,  Text-davinci-001,  Code-davinci-002,  and  Text-
davinci-002  through  technical  improvements  such  as  code-
based  pre-training,  instruction  fine-tuning,  and  reinforcement
learning  from  human  feedback3.  OpenAI  provides  Play-
ground and APIs for users to use these advanced models. Till
now,  when  it  comes  to  GPT-4  [17],  which  is  a  large  multi-
modal  model  as  the  latest  milestone  in  OpenAI’s  effort  in
scaling up deep learning, GPT-4 shows stronger capability to
handle  much  more  nuanced  instructions  than  GPT-3  based
models.

The development of artificial intelligence technology shows
that  large  models  can  learn  more  complex  and  higher-order
features/patterns from raw data (texts for large language mod-
els, text-image for large multimodal models), so as to exhibit
stronger capabilities in understanding and generating data. By
learning  all  kinds  of  abstract  knowledge  from  the  raw  data,
large-scale  pre-trained  language  models  have  better  general-
ity  and  generalization.  In  addition,  to  better  support  general
task  processing  capabilities  (realizing  the  general  artificial
intelligence),  the  autoregressive  language  model  adopted  by
GPT-3  and  its  subsequent  GPT3.5  series  models  has  more
advantages,  and  it  can  directly  utilize  natural  language  to
describe  different  tasks  in  different  fields.  Furthermore,
researchers are looking forward to the transparency of GPT-4.  

B.  In-Context Learning
GPT-3  and  the  following  GPT-3.5  serial  models  are  the

foundation  of  many  powerful  capabilities  of  ChatGPT.
Among  them,  the  in-context  learning  (ICL)  introduced  by
GPT-3  plays  a  crucial  role.  As  a  meta-learning  method  that
contains an internal loop, ICL can model more context infor-

mation to solve specific tasks, which can not only improve the
effects of various tasks, but also better deal with zero-shot and
few-shot  learning  scenarios.  With  the  support  of  ICL,  GPT-
3.5 series models can achieve good results without any train-
ing  and  fine-tuning  of  NLP  tasks,  and  even  achieved  very
shocking  results  in  some  logical  and  creative  tasks  such  as
article  generation  and  code  writing.  Next,  we  will  provide  a
detailed introduction to ICL and the technologies of chain-of-
thought and instruction fine-tuning that promote the success of
large models.

1) In-Context Learning: ICL has become a new paradigm of
natural  language  processing  (NLP)  [28].  ICL  can  append  a
few exemplars to the context, which allows the model to learn
and  complete  tasks  by  imitation.  For  example,  as  shown  in
Fig. 3 (left  part),  in  order  to  translate  the  English  phrase
“cheese” into  French,  the  task  description  and  related  exem-
plars are concatenated and input into the PLM as the context,
and  the  model  is  allowed  to  generate  the  France  phrase
autonomously.  ICL  estimates  the  likelihood  of  potential
answers over a trained language model. The core idea of ICL
is  to  learning  to  complete  tasks  with  analogies.  Supervised
learning or fine-tuning requires the use of backward gradients
to update model parameters in the training phase. Unlike this,
ICL does not need parameter updates, it directly performs ana-
logical  learning  and  task  predictions  over  pre-trained  lan-
guage models. ICL expects to learn the hidden patterns in the
demonstrations  and  make  correct  predictions.  By  adapting
ICL,  the  zero-shot  and  few-shot  learning  capabilities  are
formed  by  directly  describing  the  task  or  appending  a  small
number of exemplars into the content as prompts.

2)  Chain-of-Thought: Recently,  chain-of-thought  (CoT)
prompting is  proposed to further  improve the ability  to solve
complex  tasks  such  as  answering  arithmetic,  commonsense,
and logical reasoning questions [57]. CoT is dedicated to con-
structing  a  series  of  intermediate  steps  to  simulate  the  think-
ing process of humans in completing complex tasks [58]. With
CoT, LLM such as GPT-3 can be used to generate the reason-
ing  steps  and  answers  at  the  same  time.  For  example,  as

 

x1 x2 x3 x3x4 x5 x5

x1 x1 x1 x1 x2 x3 x4 x5

x1 x2 x3 x4 x5

x2 x2 x2x3 x4 x4 x4x5
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Fig. 2.     There three typical types of PLM: autoregressive LM, autoencoder LM and hybrid LM. Their working mechanisms are listed and compared in this
table.
 

  
3 https://yaofu.notion.site/GPT-3-5-360081d91ec245f29029d37b54573756
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shown in Fig. 3 (middle part), in order to answer the question
“The  cafeteria  had  23  apples.  If  they  used  20  to  make  lunch
and bought 6 more, how many apples do they have?”, CoT is
driven  to  imitate  the  previous  example  (the  output “Roger
started  with  5  balls.  2  cans  of  3  tennis  balls  each  is  6  tennis
balls. 5+6 = 11. The answer is 11.” for the input “Roger has 5
tennis  balls.  He  buys  2  more  cans  of  tennis  balls.  Each  can
have  3  tennis  balls.  How  many  tennis  balls  does  he  have
now?”)  and  generate  a  description  of  the  reasoning  process
“The cafeteria had 23 apples originally. They used 20 to make
lunch. So they had 23–20 = 3.They bought 6 more apples, so
they have 3+6 = 9.” and the answer description “The answer is
9.” in  the  following.  Subsequently,  researchers  began  to
improve  the  reasoning  of  large  language  models  from multi-
ple different research perspectives, such as automatically gen-
erating  CoT  prompts  (zero-shot  reasoner)  [59],  generating
multiple  associated  simple  sub-tasks  to  complete  a  complex
task  [60],  [61],  building  multiple  reasoning  chains  to  com-
plete target tasks in combination with consistent learning [62],
and select a better answer by self-verification [63].

3)  Instruction  Fine-Tuning: Moreover,  in  order  to  improve
the task generalization ability of the large language model and
deal  with  new tasks,  researchers  began to  explore  instruction
fine-tuning  (IFT)  [64],  [65].  That  is,  IFT  describes  all  NLP
tasks  using  natural  language  instructions  and  fine-tune  large
language models, so as to achieve the general ability of under-
standing  and  processing  instructions.  For  example,  as  shown
in Fig. 3 (right part),  IFT places the natural language instruc-
tions “Please  answer  the  following  question.” in  front  of  the
question “What is the boiling point of Nitrogen?”. IFT unifies
almost  all  tasks  into  the  same  text-to-text  form  based  on  the
generative  pre-training  model.  For  example,  as  a  representa-
tive model of the IFT model,  FLAN [66] uses 137B parame-
ters  to  continually  train  the  pre-trained  language  model,  and

adjusts  model  parameters  on  more  than  60  NLP  datasets
through  natural  language  instructions.  Flan-T5  [64]  greatly
improves the performance of the large language model on spe-
cific NLP tasks and the generalization ability for new tasks.  

C.  Reinforcement Learning From Human Feedback

M S ,A,R,T, p S
A R : S ×A→ R

T (st+1|st,at)
st st+1 at p(s0)

π(a|s)

π∗

L

Reinforcement learning (RL) mainly focuses on learning the
optimal  policy  to  maximize  the  desired  reward  or  reach  spe-
cific targets through the interactions between the agent and the
environment  [67].  Reinforcement  learning  has  shown  strong
capacities  on  tasks  with  large  action  spaces,  e.g.,  gaming
[68]–[70],  robotics  control  [71]–[73],  molecular  optimization
[74], [75] and other fields [76], [77]. The general paradigm of
reinforcement  learning  is  a  Markov  decision  process  (MDP).
An MDP can be defined as a tuple  = ( ), where 
is the state space,  is the set of actions,   is the
reward function,  is the transition probability from
state  to state  when taking action ,  is the initial
state  distribution.  Moreover,  a  policy  is  a  function
which computes the corresponding conditional probability. In
this way, the goal of MDP is to learn a optimal policy  and
the  cumulative  reward  is  maximized  within  an  episode  of
length :
 

π∗ = argmax
π∈∏ Es∼p(s0)[R(s)] (1)∏

R(s)
where  is  the  set  of  all  policies,  and  the  return  of  the  state

 can be calculated as 

R(s) = Eat∼π(at |st),st+1∼T (st+1 |st ,at)[
L∑

t=0

R(st,at, st+1)]. (2)

Up to now, various RL algorithms have been developed for
different  situations  [78],  e.g.,  TRPO  [79],  SAC  [80],  PPO
[81], TD3 [82], and REDQ [83].

One  crucial  factor  for  training  a  successful  reinforcement
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Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can

has 3 tennis balls. How many tennis balls does he have now?
A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls.

5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought
6 more, how many apples do they have?
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Fig. 3.     Examples of different types in ICL, mainly including zero/few-shot learning, chain-of-thought and instruction fine-tuning (adapted from [64]).
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learning  agent  is  a  well-specified  reward  function.  However,
for  tasks  (e.g.,  table  cleaning  or  clothes  folding)  of  which
goals  are  complex  and  poorly-defined,  it  is  difficult  to  con-
struct a precise reward function to evaluate whether the task is
well  finished  with  limited  sensor  information  [84].  In  this
way, to further avoid the misalignment between human prefer-
ences  and  the  objectives  of  RL  agents,  and  to  accelerate  the
efficiency  when  learning  from  scratch,  human  intuition  or
human  expertise  are  further  considered  for  knowledge  trans-
ferring  [85].  With  the  quick  development  of  deep  reinforce-
ment  learning,  this  technique  has  attracted  lots  of  attention
[86],  [87]  and  can  be  concluded  as  reinforcement  learning
with  human  feedback  (RLHF)  [29]  (as  shown  in Fig. 4(a)),
which has also been applied in ChatGPT.

In  fact,  using  human  feedback  directly  when  training  the
agent  is  quite  expensive  since  massive  amount  of  experience
is needed to be evaluated manually. Hence, a reward model is
trained  to  replace  such  works  and  rewards  of  human  prefer-
ences  can  be  provided  in  an  economical  way  with  offering
several human data for training [84].

π

{s1,a1,r1, . . . , st,at,rt}

The  process  of  training  the  reward  model  can  be  mainly
divided  into  three  steps:  1)  the  agent  interacts  with  the  envi-
ronment under the current policy  to collect a series of trajec-
tories  of  states,  actions  and rewards ,  2)
pairs of segments are selected from the trajectories generated
in step 1, and thees segments are sent to humans for compari-
son and evaluation,  3)  the parameters of  the reward model is
updated  via  supervised  learning  to  fit  human  preferences.  In
this  way,  RLHF  can  be  applied  for  more  complex  or  cus-
tomized tasks with a well-specified reward model.

In  the  natural  language  process,  aligning  the  pre-trained
large-scale language models (LMs) with human preference is
greatly decided whether the models can generate truly “good”
texts.  Thus,  RLHF has  been positively  applied  to  fine-tuning
language models in most domains in natural language process
(NLP) such as dialogue [88], [89], translation [90], [91], story
generation  [92],  evidence  extraction  [93],  [94],  and  semantic
parsing [95]. Note that in GPT-4, an additional safety reward
signal has been incorporated to reduce harmful outputs, help-
ing  to  judging  the  safety  boundaries  for  risk  relieving.  With
applying  RLHF  as  a  low-tax  alignment  technique,  language
models become much more robust to handle real-world varia-
tions and nuances in that  language.  However,  there still  exist
limitations and challenges deserve to be addressed,  including
the  demand  for  high-quality  human  feedback,  the  time  and
cost required to obtain this feedback, and the effectiveness of

reinforcement learning algorithms.  

D.  Key Technical Steps for Developing ChatGPT/InstructGPT
The technical details of ChatGPT and GPT-4 have not been

shared, and the official4 states that its implementation is simi-
lar to InstructGPT [29], which is a sibling model to ChatGPT,
yet  distinguished  by  the  data  collection  and  the  pre-trained
backbone.  Hence,  we  next  describe  the  technical  steps  of
InstructGPT,  mainly  including  supervised  fine-tuning  (SFT),
reward  modeling  (RM),  and  reinforcement  learning  (RL),  as
depicted in Fig. 5.

1)  SFT  Model: In  InstructGPT,  this  is  a  supervised  policy
model  that  is  fine-tuned  on  GPT-3  [25].  The  prompt  is  the
input,  and the response is  the output.  Note that  the backbone
of ChatGPT is a pre-trained model from the GPT-3.5 series.

Since SFT is a supervised model, it requires labeled data for
training.  Data  is  gathered  from  two  different  sources.  First,
some of the data is sampled from the OpenAI API of the ear-
lier  InstructGPT version,  which  was  trained  with  a  subset  of
demonstration  data.  Second,  others  are  provided  by  labeler,
which  includes  three  types  of  prompts:  plain  (any  arbitrary
task),  few-shot  (an  instruction  with  multiple  query/response
pairs),  and  user-based  prompts  (specific  use  cases  that  were
requested  for  application  in  OpenAI).  For  each  natural  lan-
guage prompt, the task is accompanied directly by an instruc-
tion (e.g., “Tell me about...”), but also indirectly through few-
shot  examples  (e.g.,  giving  two  examples  of  a  story,  and
prompting  the  model  to  write  another  story  about  the  same
topic) or implicit continuation (e.g., giving the start of a story,
and asking the model to finish it). As a result, the SFT dataset
has about 13k training prompts.

2)  RM  Model: This  is  a  reward  model  that  takes  a  pair  of
prompt and response as the input and produces a scalar reward
as the output.  The model  is  a  6B GPT-3 in  InstructGPT, ini-
tialized by SFT with the final unembedding layer removed.

D >C > A = B

Since RM model is also a supervised model, labeled data is
required  for  training.  To  this  end,  prompts  are  obtained
through both the OpenAI API and manual annotation, and the
SFT model generates 4 to 9 responses for each prompt. Since
it is difficult to form a unified scoring standard among annota-
tors, they tend to rank these responses to build the RM dataset,
where  the  rankings  are  the  labels.  The  dataset  includes  33k
training  prompts.  To train  the  RM model  on  this  dataset,  the
rankings are converted to scalars since they cannot be directly
used as rewards. For example, for the sorting ,
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Fig. 4.     Schematic illustration of (a) reinforcement learning from human feedback (RLHF) and (b) reinforcement learning from human feedback in NLP.
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they assign scores of 7, 6, 4, and 4, respectively.
Formally,  the  loss  function  of  the  RM model  is  defined  as

follows:
 

L(θ) = − 1(
K
2

)E(x,yh,yl)∼D[log(σ(rθ(x,yh)− rθ(x,yl)))] (3)

rθ(x,y)
x y yh yl

x D θ

where  is  a  scalar  produced  by  the  RM  model  for  the
given prompt  and response ,  ranks higher than  for the
prompt ,  is the RM dataset, and  is a set of parameters in
the model.

3) RL Model: Following the previous work [96], this model
is  fine-tuned  on  SFT  with  the  proximal  policy  optimization
(PPO) algorithm, where the input is a prompt and the output is
a  response.  PPO serves  as  the  agent  in  the  RL  model  and  is
initialized  with  the  SFT model  from the  first  step.  The  envi-
ronment  is  a  prompt  generator  that  produces  a  random input
prompt  and  expects  a  response  to  the  prompt.  Rewards  are
derived from the RM model for scoring the pair of prompt and
response. Formally, the RL model’s objective is to maximize
the following function:
 

RL(ϕ) = E(x,y)∼DRL
πϕ

[rθ(x,y)−β log(πRL
ϕ (y|x)/πS FT (y|x))]

+γEx∼Dpretrain [log(πRL
ϕ (x))] (4)

πRL
ϕ πS FT

Dpretrain β γ

x

where  and  are the policy model and trained model,
 is  the  pre-training  distribution.  and  are  used  to

control  the KL penalty and pre-training gradients.  The above
equation consists of three parts: a scoring function, Kullback-
Leibler  (KL)  divergence,  and  a  pre-training  target  of  GPT-3.
First,  the  RM  model  scores  a  prompt-response  pair,  with  a
higher  score  indicating  a  better  response.  Second,  KL  diver-
gence  is  used  to  measure  the  distance  between  the  distribu-
tions of  responses generated by the PPO and SFT models.  A
smaller distance is preferable in this step since the SFT model
is  trained  on  manually  labeled  data,  and  over-optimizing  it
could lead to inaccurate evaluations of the responses. Finally,
this part is used to calculate the probability that the RL model
generates the prompt . Note that this part contains 31k train-
ing prompts.  

III.  Capability Analysis of ChatGPT

By trying the ChatGPT system5, we can easily appreciate its
powerful  capabilities,  and at  the same time,  we can also find
its shortcomings in various aspects. This section will conduct
a  tantalising  glimpses  capability  analysis  of  ChatGPT  based
on  use  experiences  and  OpenAI’s  public  information  [17],

[29].  

A.  Advantage Analysis and Strengths of ChatGPT
Presently,  ChatGPT is  initially  based on GPT-3.5  and now

utilizes GPT-4 of large-scale pre-trained model, and is a gen-
eral-purpose  human-computer  conversation  system  obtained
by combining human-labeled data and reinforcement learning
training  for  various  dialogue  tasks  according  to  the  multi-
modal  inputs  of  texts  and  images.  It  can  understand  various
instructions of  human beings and can complete tasks such as
text generation, code writing and modification, image caption-
ing,  chart  reasoning and paper summarizing etc.  The specific
analysis of the outstanding capabilities demonstrated by Chat-
GPT is as follows:

1)  Multimodal  (Language  and  Image)  Understanding  and
Text  Generation: The  most  intuitive  feeling  of  using  Chat-
GPT  is  that  it  can  accurately  understand  the  user’s  intention
with  prompts  of  texts  (up  to  2.5  million  tokes)  and  images
(still  in  further  research),  and  generate  various  types  of  texts
in the interactive process of dialogue. It first requires a strong
multimodal  understanding  ability  which  needs  to  accurately
understand  the  dialogue  context  and  the  image  input.  Chat-
GPT can not only deal with typical NLP task instructions such
as  classification,  matching,  translation,  re-writing  (relevant
data has been processed during model training), but also deal
with new tasks, which require accurate intent understanding or
visual  understanding,  for  example,  organizing  outputs  in  the
form of lists and image captioning [17].

Moreover,  ChatGPT  has  reached  or  exceeded  human-level
performance  in  several  text  generation  tasks  such  as  answer-
ing questions, providing suggestions, summarizing and polish-
ing texts [97]. For example, when answering a question, it will
not only give an accurate answer, and the generated response
text will reveal the thought process involved in answering the
question, and even continuously adjust and correct the answer
according  to  the  user’s  guidance.  We  believe  that  ChatGPT
may  have  two  reasons  for  this  advantage:  1)  the  large  lan-
guage  model  trained  on  massive  data  of  various  forms  and
tasks  has  fully  grasped  language  laws,  and  is  able  to  under-
stand  and  generate  language  well;  2)  it  has  learned  universal
task solving ability through IFT on diverse tasks.

2) Strong Reasoning Ability  and Rich Creativity: ChatGPT
has  good  reasoning  ability,  especially  in  answering  scientific
questions,  knowledge  related  questions  and  complex  logic
questions [30]. For example, ChatGPT can give the proof of a
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certain  theorem,  and  perform  multi-hop  reasoning  according
to the  logical  chain.  ChatGPT/GPT-4 can also analyze a  pic-
ture, such as ChatGPT/GPT-4 can answer the question “What
can  you  make  according  to  the  materials  in  the  picture?”
Moreover,  ChatGPT  can  complete  various  tasks  in  accor-
dance with the logical chain specified by the user. Moreover,
ChatGPT has rich creativity and it can generate, edit, and iter-
atively  collaborate  with  users  on  creative  and  technical  writ-
ing  tasks  such  as  composing  music,  writing  scripts,  or  learn-
ing  the  user’s  writing  style.  We  believe  that  ChatGPT  may
have two reasons for  this  advantage:  1)  the model  trained on
code  data  can  better  perform  task  decomposition  and  logical
thinking;  2)  models  with  large-scale  parameters  may  have
formed the ability to emerge.

%
%

3) Knowledge Modeling and Planning: ChatGPT can com-
plete  almost  all  kinds  of  information  consulting  tasks  very
well,  and can also achieve good results in some areas requir-
ing  professional  knowledge  such  as  medical,  judicial,  and
financial. For example, passing the American Medical Exami-
nation  [98],  and  the  test  in  the  Chinese  environment  is  also
good6. This is due to the knowledge modeling ability of Chat-
GPT and its basic pre-trained large model. Meanwhile, experi-
ments have shown that GPT-4 performs at a level comparable
to  human  performance  on  a  variety  of  specialized  tests  and
academic benchmarks. For example, it passed a simulated bar
exam with a score in the top 10  of test takers, whereas GPT-
3.5  scored  in  the  bottom  10 .  On  this  basis,  ChatGPT  has
preliminary  intelligent  planning  capabilities.  For  example,  it
can  show  the  step-by-step  solution  ability  when  answering
complex  questions,  it  can  show  the  planning  ability  when
writing, and it can reflect the order of task execution and logi-
cal  relationship  when  providing  suggestions.  It  also  has  the
ability  to  even  provide  missing  details  in  planning  goals
autonomously  using  commonsense  knowledge  and  reasoning
[99].  We believe that  knowledge modeling and acquisition is
the key to the success of artificial intelligence systems. Com-
pared with traditional  knowledge engineering such as knowl-
edge graph, which describes the limited knowledge content of
a  fixed  schema  in  a  symbolic  way,  large  language  model
obtain  model  parameters  and  their  operation  processes
through end-to-end  self-learning,  which  can  implicitly  model
richer and more comprehensive knowledge content.

In brief, ChatGPT/GPT-4 has excellent language and image
understanding  and  generation  abilities,  certain  reasoning  and
creating abilities, and powerful knowledge modeling abilities.
Moreover,  ChatGPT  also  has  many  other  advantages  and
strengths,  such  as  general  task  processing,  machine  transla-
tion for vast majority of languages, and embodied interaction,
etc. To further make full use of ChatGPT, scientist can try to
use it with multiple tools to solve more complex tasks for fur-
ther usage.  

B.  Disadvantage Analysis and Limitations of ChatGPT
Although ChatGPT has powerful  abilities  in  handling vari-

ous tasks and aligning with human instructions, ChatGPT still
has the following limitations.

1)  Factual  Errors  and  Hallucination  Results: Although
ChatGPT  can  integrate  multiple  kinds  of  resources  to  gener-
ate  fluent  replies,  the  replies  generated  often  have  factual
errors  (often  called “hallucination  problem”).  Those  factual
errors  may  be  due  to  errors  and  noise  in  the  training  data
[100], [101]. At the same time, the internal logic and mecha-
nism  of  data-driven  deep  learning  model  is  still  a  black  box
for  humans,  so  the  speculation  as  to  why  the  current  answer
was  generated  can  neither  be  proven  nor  falsified.  For  some
application  scenarios  with  high  accuracy  requirements,  such
as medical consultation, the randomness of ChatGPT answers
may  lead  to  serious  consequences.  In  addition,  the  ability  of
ChatGPT to align with human instructions comes from manu-
ally labeled data. ChatGPT does not have the ability to clarify
and  confirm  fuzzy  queries  beyond  the  human  annotations,
which also brings untrustworthy obstacles to the use of Chat-
GPT  in  real  scenarios.  It  should  be  noted  that  currently  pro-
posed technologies such as Toolformer [102] and Plugin7 can
partially  alleviate  the  problem  of  factual  errors,  and  a  large
amount  of  work  has  been  proposed  [103]−[105].  However,
their effectiveness in various tasks and industries still needs to
be continuously observed and explored.

2) Insufficient Modeling of Explicit Knowledge: Although a
large  amount  of  data  and  hundreds  of  billions  of  parameters
are  used,  the  GPT  series  models  still  only  use  the  simplest
information  processing  method  in  human  wisdom,  i.e.,  pre-
dicting  the  next  possible  word  of  a  sentence.  ChatGPT lacks
the  ability  to  produce  and  model  accurate  information.  For
example, there are often wrong facts and complex mathemati-
cal  operations  can  not  be  performed.  In  fact,  the  advanced
intelligence of human beings such as cognition and decision-
making  are  very  dependent  on  knowledge  accumulated  by
social  civilization  for  a  long  time.  However,  the  GPT  series
models  including  ChatGPT  have  never  considered  the
retrieval  and  utilization  of  such  explicit  knowledge  (e.g.,
knowledge  graphs),  nor  have  any  knowledge  extracting,
updating, and reusing modules.

3)  Research  and  Development  Costs  are  High: Achieving
stable training of large models and obtaining excellent perfor-
mance requires extremely high computing costs and engineer-
ing  experience.  OpenAI  owns  and  utilizes  the  complete
Microsoft Azure cloud platform to perform stable and persis-
tent  model  training.  For  example,  the  training  of  the  basic
large  model  GPT-3  costs  12  million  US  dollars.  In  fact,  the
instability of large-scale data and large model training requires
continuous data, code, and engineering tuning, which requires
long-time technical  accumulation  and  rich  experience  in  sys-
tem optimization.

In brief, the current ChatGPT has some limitations in terms
of reliability, explicit knowledge modeling, and high research
and  development  costs  that  need  to  be  further  improved.
Moreover, there still exist other limitations that have not been
deeply discussed in this manuscript such as data bias in politi-
cal, ideological, and other area, and a lack of planning in arith-
metic/reasoning  questions  or  long  text  generation  [106].  Sci-
entist are making more efforts to improve these aspects.  

  
6 https://k.sina.com.cn/article_6208490735_1720e0cef01901d0sb.html
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IV.  The Impact of ChatGPT Across Different Fields

ChatGPT  has  emerged  as  a  popular  topic  of  discussion
across  various  industries  [107]−[109].  As  of  the  end  of  Jan-
uary 2023, ChatGPT boasted over 100 million monthly active
users,  making  it  the  fastest-growing  application  in  history.
Hence,  we  next  discuss  the  impact  of  ChatGPT  on  society
from  multiple  aspects  and  analyze  the  key  challenges  for
application.

From  an  academic  perspective,  ChatGPT  is  an  important
milestone in the field of AI, revealing the potential for achiev-
ing artificial general intelligence. In the past, AI research has
mainly focused on the analytical  capabilities  of  models.  That
is,  by  analyzing  a  given  set  of  data,  the  model  aims  to  dis-
cover the features and patterns used in practical tasks. Unlike
past AI technologies, ChatGPT is a large-scale generative lan-
guage model, and with the publication of GPT-4 image inputs
has  also  been  allowed,  proving  the  feasibility  of  multimodal
generation.  ChatGPT  assists  humans  in  a  range  of  tasks  by
learning  and  understanding  human  intent  to  generate  content
in a conversational manner. The emergence of ChatGPT signi-
fies  the  transformation  of  artificial  intelligence  from  data
understanding  to  data  generation,  achieving  a  leap  from
machine  perception  to  machine  creation.  Due  to  its  powerful
text generation capabilities, ChatGPT has the strong ability to
produce  large-scale  synthetic  data  at  a  low  cost.  This  over-
comes  the  data  limitation  in  the  process  of  AI  tasks  and  fur-
ther prompts the wider application of AI technology.

From an industry  perspective,  ChatGPT has  shown to  be  a
valuable tool in a wide range of industries (e.g., IT, customer
service,  film  and  television,  education,  and  medical  care
industries)  that  rely on human knowledge creation in an effi-
cient,  high-quality,  and  low-cost  manner.  With  the  develop-
ment  of  generative  AI  technology,  the  model  may  assist  or
even completely  replace  humans to  achieve most  of  the  con-
tent creation work in the future. In essence, ChatGPT is a tool
for  quickly  building  materials.  It  enables  low-cost  or  even
zero-cost automated content creation, revolutionizing the con-
tent  production  paradigm  across  various  industries.  For
instance,  in  the  financial  industry,  ChatGPT  can  generate
financial texts like investment and analysis reports to enhance
work efficiency and quality.  In  the media industry,  ChatGPT
can  enable  intelligent  writing,  such  as  the  automatic  creation
of news reports and articles, for creators to refine and process,
significantly  reducing  the  creative  cycle.  In  summary,  Chat-
GPT has a vast range of potential applications and can play a
crucial  role  in  almost  any  field  that  requires  processing  and
understanding  natural  language.  As  technology  continues  to
develop  and  innovate,  ChatGPT’s  influence  and  application
will continue to expand and deepen.

However,  every  technology  is  a “double-edged  sword”.
While  ChatGPT  is  showing  great  promise  in  related  indus-
tries,  it  may  also  bring  certain  risks  and  challenges.  Several
examples of these challenges are as follows:

1) Intellectual Property Protection: The answer provided by
ChatGPT  is  generated  automatically,  making  it  difficult  to
verify  the  source  of  the  data.  ChatGPT  is  trained  on  a  wide
range of data, including poetry, legal documents, natural con-

versations,  blogs,  and  emails.  These  data  inevitably  contain
copyrighted information. Consequently, ChatGPT’s responses
may  over-reference  other  people’s  work  or  articles,  poten-
tially leading to infringement disputes.

2) Safety Aspects: ChatGPT is easily to be used to generate
misleading information or phishing emails for cyber scams at
scale.  At  the same time,  it  can also help criminals  find secu-
rity  holes  in  websites  and  generate  network  attack  scripts
faster and easier. In other words, generative AI will undoubt-
edly  greatly  reduce  the  threshold  of  cyber  attacks,  because  it
not  only  expands  the  number  of  potential  threats,  but  also
empowers novices to participate in security attacks.

3)  Ethics  and  Integrity: Due  to  ChatGPT’s  high  efficiency
and high quality of response, it surpasses most of the existing
problem-solving  software.  However,  its  diverse  responses  to
the  same  question  make  it  difficult  to  detect  plagiarism  or
cheating. This could lead to students and researchers using the
tool  to  cheat,  which  could  have  adverse  consequences  for
teaching  and  academic  integrity.  Furthermore,  abusing
ChapGPT may cause more social ethics problems (e.g., gener-
ating harmful contents) without proper mitigation measures.

4)  Environmental  Impact: Since  ChatGPT involves  a  huge
amount of parameters and pre-training data, it consumes a sig-
nificant amount of hardware resources during training. Provid-
ing ChatGPT services to millions of users every day also gen-
erates carbon emissions, which accumulate daily and are chal-
lenging to estimate.

Hence,  to  develop  generative  AI  technology  responsibly,
safely,  and  controllably,  one  should  prioritize  the  following
concepts  for  achieving  high-quality,  healthy,  and  sustainable
development.  First,  transparency  and  accountability  are  cru-
cial. The application and development of ChatGPT need to be
open and transparent to ensure that society and relevant stake-
holders  understand its  use and potential  risks.  Moreover,  one
should  establish  accountability  mechanisms  to  ensure  that
ChatGPT users and developers are responsible for its use and
application. Second, one should follow moral and legal princi-
ples.  The  development  and  use  of  ChatGPT  must  align  with
ethical and legal principles. One needs to ensure that its appli-
cation  does  not  violate  ethical  and  legal  regulations,  such  as
those related to fraud, invasion of privacy, discrimination, and
other undesirable purposes. Third, one needs to focus on envi-
ronmental  protection  and sustainability.  The use  of  ChatGPT
can  consume  significant  computing  resources  and  energy,
leading to substantial carbon emissions. Therefore, one should
pay  attention  to  environmental  protection  and  sustainability,
reduce  the  impact  on  the  environment  as  much  as  possible,
and apply the technology in a more sustainable way.  

V.  The Potential Future Development
Trends of ChatGPT

Even GPT-4 brings significant improvements for ChatGPT,
several core problems are also still not been solved yet. Thus,
this  section  analyzes  the  future  development  of  ChatGPT.
First we discuss the hallucination problem, existing in most of
the  large-scale  models,  including  ChatGPT.  Then,  consider-
ing  the  huge  cost  and  the  large-scale  hardware  requirements,
we  discuss  how  to  reduce  the  size  of  language  models  for
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model  compression.  Finally,  we  propose  several  other  trends
in future, and the overview diagram is shown in Fig. 6.
 

Hallucination

Model compression

Other future trends

Lifelong learning Complex reasoning Cross-disciplinary

Compound SMILES notation

CC(=O)OC1=CC

=CC=C1C(O)=O
New

message 1

New

message N…

…

Current problems

Generation of erroneous

information

Poor performance in

knowledge-extensive fields

Ethical concerns

Enormous parameters

Costly to store, distribute,

and deploy

Incorporating external

knowledge

Developing retrieval-

augmented language

model

Distillation-based methods

Pruning-based methods

Quantization-based

methods

Training seamlessly from

new data instead of

retraining from scratch

Introducing more advanced

knowledge representation

and reasoning techniques

Incorporating other

systems, such as

chemical language

Solutions

� 

� 

� 

� 

� 

� 

� 

� 

� 

� � � 

� 

 
Fig. 6.     The future trends of ChatGPT for hallucination, model compression
and other important trends. Image materials are adapted from the Internet8.
   

A.  Solving the Hallucination Problem of ChatGPT
Recent  advances  in  large-scale  language  models  (LLM),

have  enabled  the  generation  of  seemingly  high-quality  lan-
guage from appropriately formulated prompts. However, these
models are known to generate “hallucinated” facts, which can
lead  to  misleading  conclusions.  The  potential  for  generating
erroneous information remains a significant concern in the use
of such models, which limits their applicability in knowledge-
extensive  fields  such  as  finance,  legal  advisement  and  medi-
cal suggestions. In response to this problem, some researchers
have  proposed  incorporating  external  knowledge  sources  to
mitigate “hallucination” and  the “retrieval-augmented  lan-
guage” model  has  emerged  as  a  popular  approach  [110]−
[112].  Typically,  these  systems  retrieve  relevant  knowledge
from a large knowledge base such as Wikipedia or other web
texts,  given a  prompt,  and generate  a  response  by leveraging
the  retrieved  knowledge.  By  incorporating  external  knowl-
edge  sources,  such  as  named  entities  or  specific  facts,  these
systems  can  improve  their  accuracy  and  reduce  the  potential
for generating misleading or incorrect information.

However, the use of external knowledge sources also poses
challenges,  such  as  the  need  for  effective  retrieval  methods
and the possibility of introducing bias into the models. There-
fore, further research is needed to improve the effectiveness of
these  approaches  and  to  address  potential  ethical  concerns
when deploying large-scale language models in various appli-
cations.  

B.  Model Compression for LLM
Researchers have shown that the capabilities of transformer-

based language models grow log-linearly with the number of
parameters [113], [114], and some promising abilities such as

in-context  learning  [25]  and  chain-of-thoughts  [57]  emerge
when  the  model  size  exceeds  certain  thresholds.  Equipped
with  the  scaling  law  [114],  today’s  modern  large  language
models  have revolutionized natural  language processing with
their  remarkable  performance  on  various  language  tasks.
However,  these  models  come  with  a  significant  cost.  They
usually  contain  over  100  billion  parameters,  which  presents
challenges  for  practical  usage,  including  increased  costs  for
storage,  distribution,  and  deployment  in  real-world  applica-
tions. As a result, researchers need to develop new approaches
for  model  compression and optimization to  make these mod-
els more practical and accessible for real-world use cases.

Reducing  the  size  of  language  models  while  maintaining
their performance on downstream tasks has been a long-stand-
ing challenge in the field, and researchers have proposed mul-
tiple  approaches  to  tackle  this  problem.  Distillation-based
approaches,  such  as  those  proposed  in  [49],  [115]−[117],
involve  training  a  smaller  student  model  using  extra  training
data or soft labels generated by a larger teacher model (LLM
or ChatGPT).  Teacher  model  by hundreds  or  even thousands
of times while maintaining the emerging properties remains an
open  problem  that  requires  further  research.  Pruning-based
approaches [118], [119] aim to reduce the size of the model by
removing  a  number  of  unimportant  weights,  while  achieving
similar performance to the original model. Quantization-based
approaches  [120],  [121]  use  8-bit  or  even  binary  numbers  to
store the model weights, thereby reducing the model size com-
pared  to  32-bit  storage.  Although  these  approaches  success-
fully  reduce  the  model  size,  special  hardware  design  is  often
required to accelerate model inference speed, which can limit
their  usage.  Please  refer  to  [122]  for  a  more  comprehensive
survey of the field.  

C.  Other Future Trends
ChatGPT  has  a  vast  potential  for  potential  future  develop-

ment  from both  research  and  practical  perspectives,  and  it  is
impossible  to  list  them  all  in  this  paper.  As  discussed  in  the
previous  section,  we  have  provided  a  few  examples  to  illus-
trate  the  wide  range  of  possibilities  for  the  model’s  future
direction.

%

1)  Lifelong  Learning  Incorporation: Experiments  have
proved  that  ChatGPT  published  in  January  2023  can  solve
70  theory  of  mind  (ToM)  tasks,  which  is  comparable  with
that  of  seven-year-old  children  [123].  However,  this  does
mean  that  ChatGPT  has  mind  as  humans  and  it  is  just  the
results  of  strong  capability  of  the  language  models.  Message
of  current  affairs  may forever  not  be  learned by ChapGPT if
we  stop  updating  the  model.  To  adapt  to  such  changes,  one
possible approach is to incorporate lifelong learning [124] into
the  ChatGPT model.  By  doing  so,  the  model  can  seamlessly
incorporate  new  data  without  requiring  retraining  from
scratch.  This  is  particularly  advantageous  for  large-scale  lan-
guage  models  such  as  ChatGPT,  as  it  saves  computing
resources  and  enables  more  efficient  and  effective  perfor-
mance. Additionally, lifelong learning can enable the model to
evolve in real-time, leading to more personalized and relevant
results. This is particularly beneficial in ChatGPT, where user
interactions  are  constantly  evolving,  and  up-to-date  informa-

  
8 https://www.quora.com/Will-Chat-GPT-take-over-Google,
https://www.appnovation.com/blog/seo-google-algorithm-and-knowledge-
graph
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tion  is  critical.  Overall,  incorporating  lifelong  learning  into
ChatGPT can  lead  to  improved  performance  and  more  accu-
rate results, benefiting both researchers and users alike.

2) Complex Reasoning Abilities Enhancement: While Chat-
GPT  already  has  impressive  reasoning  abilities,  there  is
always  room  for  improvement  to  tackle  even  more  complex
problems. Further research can focus on enhancing the reason-
ing  capabilities  of  the  model  by  incorporating  advanced
knowledge  representation  and  reasoning  techniques,  such  as
knowledge  graphs  [125],  [126]  and  logical  reasoning  [127].
These  improvements  help  the  model  better  understand  and
reason over complex structures and relationships between dif-
ferent concepts. By advancing the reasoning abilities of Chat-
GPT,  the  model  can  become  even  more  powerful  and  versa-
tile in its applications.

3) Cross-Disciplinary Integration: The significant language
processing performance of ChapGPT also has the potential to
be  fused  with  chemical  system.  Simplified  molecular  input
linear  entry  system (SMILES)  [128]  is  composed  of  specific
ASCII  symbols  which  is  used  to  define  chemical,  represent-
ing  the  compositions  and  structure  for  molecules.  SMILES
can also be seen as  a  kind of  language system, and thus it  is
also  deserved  to  be  chained  with  ChatGPT  for  further
research.

In addition to the above points, we have also identified sev-
eral other future trends or directions of ChatGPT: 1) realizing
a larger long-term memory may help to better understand and
process  more  complex  tasks,  such  as  reading  a  book;  2)
improving  the  robustness  and  sensitivity  to  inputs  is  impor-
tant  since  the  prompts  and  their  sequence  may  greatly  influ-
ence the outputs, leading to suboptimal or non-aligned results;
3) improving transparency, interpretability and consistency is
also important, as it helps to establish better trust or collabora-
tion with the user; and 4) external calls should be considered
for application expansion. There is still much work to be done
to create a better ChatGPT model or an AGI model.  

VI.  Conclusion

In  this  paper,  we  provide  a  brief  overview  on  the  recently
released  AI  agent  ChatGPT,  including  its  predecessor,
strengths  and  the  limitations,  social  impact  and  potential
future development.  We discuss the core techniques of  Chat-
GPT,  mainly  including  large-scale  language  models,  in-con-
text  learning,  reinforcement  learning  from  human  feedback
and  their  potential  relationship.  In  a  nutshell,  ChatGPT  is  a
phenomenal  technology product  that  holds  significant  impor-
tance in both academic and industry domains.

However,  it  is  still  unclear  how ChatGPT can  realize  such
powerful  functions  by  combing  simple  algorithmic  compo-
nents  of  gradient  descent,  large-scale  language  models  con-
structed  by  Transformer,  and  vast  amounts  of  data.  One
important  future  direction  is  to  research  the  phenomenon  of
emergence  in  large  language  models  to  understand  how  the
emergence  appears  and  what  kind  of  abilities  does  it  may
have. This could be important in creating stronger AIGC mod-
els.

Currently,  more  and  more  companies  and  research  groups
are  following  OpenAI’s  lead  in  developing  their  own  Chat-

GPT-like products or AIGC products. For example, Microsoft
has  combined  ChatGPT  with  their  search  engine  Bing  to
improve the quality of the search results, Baidu has published
their ChatGPT aliked robot called ERNIE Bot, which can gen-
erate  images  based  on  text  descriptions,  and  Sensetime  has
developed their SenseChat robot,  which can generate figures,
videos,  and  3D contents.  ChatGPT-related  technologies  have
attracted worldwide attention and it becomes a major force in
computer science.

In brief, the essence of ChatGPT-like products is still a kind
of  AIGC  instead  of  reaching  artificial  super  intelligence
(ASI). In this way, people should further focus the side-effects
of technology products,  such as the reliability and validity of
the  answers  by  artificial  intelligence  and  the  potential  for
cheating  to  occur.  Overall,  when  people  are  looking  forward
to  more  powerful  artificial  intelligence,  consensus  on  ethical
and responsible usage are also required to be carefully consid-
ered.
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