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Aiming at recovering an unknown tensor (i.e., multi-way array) corrupted by both sparse outliers and dense noises, robust tensor
decomposition (RTD) serves as a powerful pre-processing tool for subsequent tasks like classification and target detection in
many computer vision and machine learning applications. Recently, tubal nuclear norm (TNN) based optimization is proposed
with superior performance as compared with other tensorial nuclear norms for tensor recovery. However, one major limitation is
its orientation sensitivity due to low-rankness strictly defined along tubal orientation and it cannot simultaneously model spectral
low-rankness in multiple orientations. To this end, we introduce two new tensor norms called OITNN-O and OITNN-L to exploit
multi-orientational spectral low-rankness for an arbitrary K-way (K ≥ 3) tensors. We further formulate two RTD models via
the proposed norms and develop two algorithms as the solutions. Theoretically, we establish non-asymptotic error bounds which
can predict the scaling behavior of the estimation error. Experiments on real-world datasets demonstrate the superiority and
effectiveness of the proposed norms.
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1 Introduction

Tensor decomposition has become a paradigm in modern
multi-way data analysis [1–4]. Due to various reasons like
sensor failures, occlusion in videos, or abnormalities, the
multi-way data are often corrupted by noises and gross
corruptions [5–8]. For example, the embedded noises in
hyper-spectral image are probably a mixture of small dense
noises and sparse gross corruptions [9]. To tackle both
small noises and gross corruptions, the robust tensor de-
composition (RTD) [5] is studied to robustify traditional
tensor decompositions like CANDECOMP/PARAFAC (CP)

*Corresponding author (email: gx.zhou@gdut.edu.cn)

decomposition [10] and Tucker decomposition [11] which are
sensitive to gross corruptions.

In many real-world applications, most variation of the
multi-way data can be linearly dominated by a relatively
small number of latent factors due to intrinsic correlations
and redundancy. Thus, such data can be well approximated
by a “low rank” tensor. Thanks to the multiple definitions of
tensor rank function, such as CP rank [10], Tucker rank [11],
tensor train rank [12], and tubal rank [13], multi-way data can
be modeled with different types of low-rank structures.

To recover a low-rank tensor, one natural way is to solve
the rank minimization problem (RMP) [14]. Unfortunately,
RMP is NP-hard in general for matrices (2-way tensors) [15]
and even harder for higher-way tensors [16]. In low-rank ma-
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trix estimation, matrix nuclear norm is proposed as the con-
vex envelop of rank function [17] for tractable algorithms.
Motivated by the great success of matrix nuclear norm, its
tensor extensions have been extensively studied, like tensor
trace norm [18], overlapped Schatten-1 norm (SNN) [14,19],
latent Schatten norm (LatentNN) [20], squared nuclear norm
(SqNN) [21], and tubal nuclear norm (TNN) [22]. Among
existing tensorial nuclear norms1), TNN is induced by the
tensor singular value decomposition (t-SVD) [13] and has
shown superior performance in various applications, such as
image/video inpainting/de-noising [23–25].

In real multi-way data like images and videos, there is
an ubiquitous “spatial-shifting” correlation making such data
spatial-temporally smooth [1]. From a signal processing
standpoint, smoothness in original domain often reflects the
existence of some simple patterns in spectral domain [26].
TNN is quite suitable to capture such simple patterns since it
exploits spectral low-rankness for 3-way tensors. However,
by computing nuclear norms of frontal slices after 1D-DFT
on the mode-3 fibers, it is strictly orientation sensitive and
fails to capture the complex intra-mode and inter-mode corre-
lations in multiple orientations for higher-way tensors. To im-
prove the limited representation ability and flexibility of TNN
in modeling multi-orientational correlations, we propose two
orientation invariant tensor norms for K-way (K ≥ 3) tensors
and apply them to RTD. Main contributions of this paper are
three-fold2).

(1) We propose two tensor norms via a novel 3d unfolding
operation on K-way tensors, which are orientation invariant,
and thus can be exploited for the multi-orientational spectral
low-rankness.

(2) The new norms are employed to formulate RTD as two
convex models, together with corresponding algorithms.

(3) Error bounds of the proposed models are analyzed and
provided, which enables us to predict approximately the scal-
ing behavior of the estimation error.

The remainder of this paper proceeds as follows. We first
introduce some notation and preliminaries in Sect. 2. Then,
the proposed norms are defined in Sect. 3. Two new models
for the RTD based on the proposed norms are formulated in
Sect. 4. The statistical performance of the proposed estima-
tors is analyzed in Sect. 5, and we compute the estimators by
using ADMM-based algorithms described in Sect. 6. Experi-
mental results on both synthetic and real datasets are reported
in Sect. 7. We summarize this paper and discuss future direc-
tions briefly in Sect. 8. The proofs of the theoretical results
are given in the Appendix. The demo code in Matlab for this

work can be found in https://qibinzhao.github.io.

2 Notations and preliminaries

Notations We use lowercase boldface, uppercase boldface,
and calligraphy letters to denote vectors (e.g., v), matrices
(e.g., M), and tensors (e.g., T ), respectively. Let [n] :=
{1, 2, · · · , n}, ∀n ∈ N+. We use c, c′, c1 etc. to denote con-
stants whose values can vary from line to line. Given a 3-
way tensor T ∈ Rd1×d2×d3 , let T(i) := T (:, :, i) denotes its i-th
frontal slice. Without specification, a K-way tensor refers to
a tensor of 3 or higher ways, i.e., K ≥ 3. If the size of a
tensor is not given explicitly, then it is in Rd1×d2×···×dK . For
notational simplicity, let dK+1 = d1, D =

∏
k∈[K] dk, d\k =

D/(dkdk+1), d̃k =
√

dk+1
(√

dk +
√

d\k
)
, ∀k ∈ [K].

For a matrix M with singular values σi’s, define its nuclear
norm and spectral norm respectively as follows:

∥M∥∗ :=
∑

i
σi, ∥M∥ := maxi σi.

Given a tensor T ∈ Rd1×d2×···×dK , define its l0-norm, l1-norm,
F-norm, and l∞-norm respectively as follows:

∥T ∥l0 : = ∥vec(T )∥0, ∥T ∥l0 := ∥vec(T )∥0,
∥T ∥F : = ∥vec(T )∥2, ∥T ∥l∞ := ∥vec(T )∥∞,

where vec(·) denotes the vectorization [28].
Other notations are introduced when they first appear.

2.1 Nuclear norms based on low Tucker rank structure

Originated from 1966 [11], the low Tucker rank structure
has been widely studied [19, 29] and applied [14, 30, 31] in
computer vision and machine learning. For a K-way tensor
T ∈ Rd1×d2×···×dK , its Tucker rank is a K-dimensional vector
whose k-th entry is the (matrix) rank of its mode-k unfolding
T(k):

r⃗Tucker(T ) := (rank(T(1)), · · · , rank(T(K)))⊤ ∈ RK , (1)

where T(k) ∈ Rdk×(D/dk) is the mode-k unfolding of T [28] ob-
tained by concatenating all the mode-k fibers of T as column
vectors. The Tucker rank is based on the matrix rank and thus
can be computed efficiently using the (matrix) SVD.

By relaxing the matrix rank in eq. (1) to its convex en-
velop (within the unit spectral norm ball), i.e., the matrix nu-
clear norm, we obtain a convex relaxation of the Tucker rank,
named sum of nuclear norms (SNN) [14], which is defined as
follows:

∥T ∥snn :=
K∑

k=1

αk∥T(k)∥∗, (2)

1) In this paper, “tensorial nuclear norms” refer to tensor extensions of matrix nuclear norm instead of the nuclear norm induced by CP decomposition [18].
2) A short conference version of this work [27] has been presented in the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20), New York,

USA.
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where αk’s are positive constants.
The SNN minimization encourages a low-Tucker-rank

structure which requires the underlying tensor to be low-
rank simultaneously in all K orientations, and has found
many applications in tensor recovery [5, 14, 19, 32]. How-
ever, Tomioka et al. [20] pointed out that the low-Tucker-rank
assumption may be too restricted for some tensor data that
are not simultaneously low-rank along all orientations, and
proposed a tensor norm (which is called latent nuclear norm
(LatentNN) in this paper) to relax it as follows:

∥T ∥latent := inf
T =∑k X(k)

K∑
k=1

∥X(k)
(k)∥∗. (3)

The motivation of LatentNN is to model the underlying
K-way tensor T ∈ Rd1×d2×···×dK as the sum of K component
tensors X(1), · · · ,X(K), where the k-th component X(k) is low-
rank only along the k-th orientation (by minimizing the nu-
clear norm of the mode-k unfolding X(k)

(k)). For a lower gen-
eralization error in multi-task learning, a scaled version of
LatentNN was proposed in ref. [33] as follows:

∥T ∥s-latent := inf
T =∑k X(k)

K∑
k=1

1
√

dk
∥X(k)

(k)∥∗. (4)

As reported in refs. [20, 32], LatentNN is more suitable than
SNN for tensor data that is not simultaneously low-rank along
all orientations.

2.2 Tensor TNN

The tensor TNN is an extension of the matrix nuclear norm
within the framework of t-SVD whose basic notions are given
as follows.

Definition 1 (t-product [13]). Given T 1 ∈ Rd1×d2×d3 and
T 2 ∈ Rd2×d4×d3 , their t-product T = T 1 ∗ T 2 ∈ Rd1×d4×d3 is a
tensor whose (i, j)-th tube is computed by

T (i, j, :) =
d2∑

k=1

T 1(i, k, :) • T 2(k, j, :),

where • is the circular convolution between tubes (i.e., vec-
tors).

Definition 2 (Tensor transpose [13]). Let T be a tensor of
size d1 × d2 × d3, then T ⊤ is the d2 × d1 × d3 tensor obtained
by transposing each of the frontal slices and then reversing
the order of transposed frontal slices 2 through d3.

Definition 3 (Identity tensor [13]). The identity tensor I ∈
Rd×d×d3 is a tensor whose first frontal slice is the d×d identity
matrix and all other frontal slices are zero.

Definition 4 (f-diagonal tensor [13]). A tensor is called f-
diagonal if each frontal slice of the tensor is a diagonal ma-
trix.

Definition 5 (Orthogonal tensor [13]). A tensor Q ∈
Rd×d×d3 is orthogonal if Q⊤ ∗Q = Q ∗Q⊤ = I .

The block diagonal matrix of 3-way tensors is further de-
fined for the convenience of analysis.

Definition 6 (The block-diagonal matrix [13]). Let T (or
T ) denote the block-diagonal matrix of the tensor T̃ which
is the Fourier version3) of T , i.e.,

T :=


T̃

(1)

. . .

T̃
(d3)

 ∈ Cd1d3×d2d3 . (5)

Then, t-SVD can be defined as follows (see Figure 1).

Definition 7 (t-SVD [13]). Any tensor T ∈ Rd1×d2×d3 has a
tensor singular value decomposition (t-SVD) as

T =U ∗ S ∗V⊤, (6)

where U ∈ Rd1×d1×d3 ,V ∈ Rd2×d2×d3 are orthogonal tensors,
and S ∈ Rd1×d2×d3 is an f -diagonal tensor. The tubal rank of
T is defined as the number of non-zero tubes of S:

rtb(T ) := #
{
i
∣∣∣S(i, i, :) , 0

}
. (7)

Definition 8 (Tensor average rank, TNN [24]). Given T ∈
Rd1×d2×d3 , let T̃ be its Fourier version in Cd1×d2×d3 . The ten-
sor average rank rankavg(·), TNN ∥·∥⋆ of T are defined as the
averaged rank and nuclear norm of frontal slices of T̃ :

rankavg(T ) :=
1
d3

d3∑
i=1

rank(T̃
(i)

), ∥T ∥⋆ :=
1
d3

d3∑
i=1

∥T̃(i)∥∗,

where tensor spectral norm ∥·∥ is the largest spectral
norm:

∥T ∥ := max
i∈[d3]
∥T̃(i)∥.

According to the definition of tensor average rank, it is
equal to the rank of Fourier block diagonal matrix T (aver-
aged by the d3 diagonal blocks), and thus it indeed measures

Figure 1 (Color online) An illustration of t-SVD.

3) The Fourier version T̃ is obtained by performing 1D-DFT on all tubes of T , i.e., T̃ = fft(T , [], 3) ∈ Cd1×d2×d3 in Matlab.
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low-rankness in the spectral domain defined by DFT on the
mode-3 fibers. As proven in ref. [24], TNN is the convex
envelop of tensor average rank in unit tensor spectral norm
ball. Thus, TNN encourages a low average rank which means
low-rankness in spectral domain according to Definition 8. It
is strictly orientation sensitive in the sense that just mode-
3 fibers are chosen to perform DFT, thus only spectral low-
rankness along orientation of mode-3 can be exploited. Since
TNN is orientation sensitive and defined for 3-way tensors, it
has limited representation ability for higher-way tensors.

3 Orientation invariant TNNs

To overcome the orientation sensitivity of TNN, we propose
two orientation invariant extensions of TNN to exploit the
multi-orientational spectral low-rankness for general K-way
tensors in this section. Specifically, our strategy consists of
three steps.

(1) We define a new 3d-unfolding operation that can con-
veniently transform a K-way tensor to 3-way, such that the
average rank (and TNN) can be directly utilized to model
spectral low-rankness of the resulted 3-way tensor.

(2) Based on the 3d-unfolding, we propose the orientation
invariant average rank (OIAR) as a suitable measure of multi-
orientation spectral low-rankness for general K-way tensors.

(3) For tractable optimization, we relax the OIAR via con-
vex proxy to define the OITNN-O, which is furthermore re-
leased to OITNN-L.

3.1 A new tensor unfolding operation

Before defining the new norms, we first propose a new tensor
3d-unfolding operation as follows.

Definition 9 (Mode-(k, t) 3d-unfolding). For different in-
tegers k, t ∈ [K], the mode-(k, t) 3d-unfolding of T ∈
Rd1×d2×···×dK is a 3-way tensor T [k,t] of size dk×(D/(dkdt))×dt,
obtained by the following two steps (see Figure 2).
• First, permute T toZ ∈ Rd′1×d′2×···×d′K whose 1st and Kth

modes are respectively the kth and tth modes of T , with the
rest modes permuted circularly.
• Second, reshape Z to T [k,t] ∈ Rdk×(Dd−1

k d−1
t )×dt obeying

the equation as follows:

(T [k,t])i1 jiK = Zi1i2···iK ,

where j = 1 +
∑K−1

l=2 (il − 1)Jl with Jl =
∑l−1

m=2 d′m.

Intuitively, by viewing a K-way tensor T as a “(K-1)-way
array T ” of size d1 × d2 × · · · × dt−1 × dt+1 × · · · dK whose
entries are mode-t tubes, the mode-(k, t) 3d-unfolding T [k,t]

Figure 2 (Color online) Illustration of 3d-unfolding.

can also be analogously viewed as a “mode-k unfolding” of
T with size dk × (Dd−1

k d−1
t ) whose entries are mode-t tubes.

Generally, the mode t of this 3d-unfolding can be any
mode except k. In the sequel, we simply set t = k + 1, such
that mode t traverses all the K orientations when k slides from
1 to K, by which some orientation invariant measures can be
defined. For the ease of presentation, we simply let

T [k] := T [k,k+1],

and name it the mode-k 3d-unfolding4) of T ∈ Rd1×d2×···×dK .

3.2 Multi-orientational spectral low-rankness

3.2.1 The low OIAR structure

Based on the proposed 3d-unfolding operation, two orienta-
tion invariant tensor ranks are defined.

Definition 10 (OITR and OIAR). For any tensor T ∈
Rd1×d2×···×dK , its orientation invariant tubal rank (OITR) r⃗t and
orientation invariant average rank (OIAR) r⃗a are defined as
the K-dimensional vectors whose k-th entries are respectively
the tubal rank and average rank of the mode-k 3d-unfolding
T [k] as follows:

r⃗t(T ) :=
(
rtb(T [1]), · · · , rtb(T [K])

)⊤ ∈ RK ,

r⃗a(T ) :=
(
rankavg(T [1]), · · · , rankavg(T [K])

)⊤ ∈ RK .
(8)

As shown in eq. (8), OITR serves as a complexity measure
in the original domain in all orientations, whereas the OIAR
measures multi-orientational low-rankness in the spectral do-
main. They have the following relationship with the classical
Tucker rank r⃗Tucker.

Lemma 1. It holds for any tensor T ∈ Rd1×d2×···×dK that

r⃗a(T ) ≤ min{⃗rt(T ), r⃗Tucker(T )}, (9)

where the partial order “≤” is defined entry-wisely.

4) Using circular order of modes, let dK+1 = d(K+1)modK = d1.
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Proof. Given any tensor T ∈ Rd1×d2×···×dK , let K = T [k] ∈
Rdk×(Dd−1

k d−1
k+1)×dk+1 denote its mode-k 3d-unfolding (k ∈ [K]).

We first show that r⃗a(T ) ≤ r⃗t(T ). Indeed, it holds that

(⃗ra(T ))k = rankavg(K)
(i)
≤ rtb(K) = (⃗rt(T ))k, (10)

where inequality (i) holds due to the property of DFT which
indicates that the tubal rank of T defined in eq. (7) is lower
bounded by the average rank:

rtb(T ) := #
{
i
∣∣∣S(i, i, :) , 0

}
= #

{
i
∣∣∣S̃(i, i, :) , 0

}
= max

l∈[d3]
rank(S(l))

≥ 1
d3

d3∑
l=1

rank(S(l))

≥ rankavg(S).

(11)

Then, we show r⃗a(T ) ≤ r⃗Tucker(T ). On the one hand, ac-
cording to ref. [24], we have

(⃗ra(T ))k = rankavg(K) ≤ rank(K(1)), (12)

where K(1) is the mode-1 unfolding ofK . On the other hand,
sinceK is the mode-k 3d-unfolding of T , it holds that

rank(K(1)) = rank(T(k)) = (⃗rTucker(T ))k, (13)

where matrix T(k) is the mode-k unfolding of T . Thus, we
have r⃗a(T ) ≤ r⃗Tucker(T ). Putting things together, we obtain
r⃗a(T ) ≤ min{⃗rt(T ), r⃗Tucker(T )}. �

3.2.2 Ubiquity of the low OIAR structure

Lemma 1 indicates that low OITR or Tucker rank results in
low OIAR. Thus, the low OIAR assumption is weaker than
the popular low Tucker rank assumption. As the low-Tucker-
rankness is an intrinsic low-dimensional structure of many
visual data [14], it is also interesting to ask: is the low-OIAR
structure ubiquitous for real tensor data?

Next, we will show that the low-OIAR structure is a ubiq-
uitous property of many typical visual data like 3-way color
images (exampled by Figure 3(a)) and 4-way color videos
(exampled by the YUV video akiyo5) in Figure 3(b)).

As discussed in Sect. 2, the tensor average rank indeed
measures low-rankness of the rank of Fourier block diagonal
matrix M of a 3-way tensor M ∈ Rd1×d2×d3 . Thus, accord-
ing to Definition 10, OIAR indeed measures low-rankness of
the rank of Fourier block diagonal matrix T[k] of the mode-k
3d-unfolding T [k] of a given tensor T ∈ Rd1×d2×···×dK for all
k ∈ [K]. Therefore, if all the Fourier block diagonal matrices

T[k] are (approximately) low-rank for all k ∈ [K], then we can
say T has a low OIAR structure.

For the 3-way color image T in Figure 3(a), we plot the
singular values of T[k] (k = 1, 2, 3) in Figure 4. It can be
found that for all k = 1, 2, 3, the singular values of T[k] decay
dramatically, indicating nice low-rankness of T[k]. Thus, the
3-way color image T in Figure 3(a) has low OIAR structure.

For the 4-way akiyo video tensor T illustrated in Figure
3(b), we also plot the singular values of T[k] (k = 1, 2, 3, 4)
in Figure 5. We can see that for all k = 1, 2, 3, 4, the singu-
lar values of T[k] also decay dramatically, indicating the low-
rankness of T[k] and thus the low-OIAR-ness of the 4-way
akiyo video.

3.3 The proposed OITNNs

By relaxing average rank to its convex envelop in each ori-
entation, we naturally define the following norm as a convex
relaxation of OIAR.

(a) (b)

Figure 3 (Color online) Color image and videos as example tensors with
low-OIAR-structure. (a) A 3-way color images of size 256×256×3; (b) one
frame of the 4-way akiyo video of size 142 × 176 × 3 × 300.
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Figure 4 (Color online) Plots of singular values of the Fourier block diag-
onal matrices T[k] of the mode-k 3d-unfolding T [k] (k = 1, 2, 3) of the 3-way
color image tensor T in Figure 3(a).

5) The video is available at https://media.xiph.org/video/derf/y4m/akiyo qcif.y4m.

https://media.xiph.org/video/derf/y4m/akiyo_qcif.y4m


Wang A D, et al. Sci China Tech Sci June (2022) Vol. 65 No. 6 1305

Definition 11 (OITNN-O). The overlapped orientation in-
variant tubal nuclear norm (OITNN-O) of T ∈ Rd1×d2×···×dK is
defined as

∥T ∥⋆o :=
∑K

k=1
wk∥T [k]∥⋆, (14)

where wk’s are positive weights satisfying
∑

k wk = 1.

OITNN-O encourages a low OIAR structure, which means
low-rankness in spectral domain of all orientations. Thus in
the original domain, it models a data tensor as simultaneously
low tubal rank in all orientations (see Figure 6(a)).

Although the assumption of low OIAR is weaker than low
Tucker rank, it may still be strict for some real data tensors.
In ref. [20], it is pointed out that LatentNN induced by a
mixture model is more suitable than SNN for tensors only
low rank in certain modes. Motivated by this, we define the
latent OITNN to relax the low OIAR assumption.

Definition 12 (OITNN-L). The latent orientation invariant
tubal nuclear norm (OITNN-L) of T ∈ Rd1×d2×···×dK is defined
as
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Figure 5 (Color online) Plots of singular values of the Fourier block di-
agonal matrices T[k] of the mode-k 3d-unfolding T [k] (k = 1, 2, 3, 4) of the
4-way akiyo video tensor T in Figure 3(b).

(a) (b)

Figure 6 (Color online) Illustration of two OITNNs for 3D tensors
T ∈ Rd1×d2×d3 . (a) OITNN-O encourages simultaneously low tubal rank
structure in all orientations; (b) OITNN-L models T as a mixture of three
low tubal rank tensors {L(k)}.

∥T ∥⋆ι := inf∑
k L(k)=T

K∑
k=1

vk∥L(k)
[k]∥⋆, (15)

where vk’s are non-negative weights satisfying
∑

k vk = 1,
and L(k)

[k] is the mode-k 3d-unfolding of latent component
L(k), ∀k ∈ [K].

OITNN-L seeks K latent components {L(k)} to minimize
a weighted sum of their TNNs in each orientation. Thus, it
models T as a mixture of K low tubal rank tensors in orig-
inal domain (see Figure 6(b)). According to Definitions 11
and 12, both OITNN-O and OITNN-L can exploit spectral
low-rankness in all orientations and are invariant to circular
permutations. Since TNN has been shown to be more pow-
erful than the matrix nuclear norm [22, 24], we expect that
OITNN-O and OITNN-L outperform SNN and LatentNN in
some applications, respectively. This expectation will be ver-
ified by experiments on real datasets in the experiment sec-
tion.

We now give the dual norms of OITNN-O and OITNN-L.

Lemma 2. The dual norms of ∥· ∥⋆o and ∥· ∥⋆ι, denoted by
∥· ∥∗⋆o and ∥· ∥∗⋆ι respectively, can be computed as follows:

∥T ∥∗⋆o = inf∑
k
X(k)=T maxk

{
w−1

k ∥X
(k)
[k]∥

}
,

∥T ∥∗⋆ι =max
k∈[K]

{
v−1

k ∥T [k]∥
}
.

(16)

Proof. According to the definition of dual norm [34], the
dual norms of ∥· ∥⋆o and ∥· ∥⋆ι can be formulated as the fol-
lowing maximization problems:

∥T ∥∗⋆o := sup
M
⟨M,T ⟩, s.t. ∥M∥⋆o ≤ 1, (17)

and

∥T ∥∗⋆ι := sup
M
⟨M,T ⟩, s.t. ∥M∥⋆ι ≤ 1. (18)

They are constrained maximization problems. We prove
the first part. Since Problem (17) satisfies Slatter’s condition,
the strong duality holds: the supremum of Problem (17) is
equal to the infimum of its dual problem. Thus, by compa-
ring the definition in eq. (17) and the target formulation in
the first line of eq. (16), we only need to show that the dual
problem of Problem (17) agrees with

inf∑
k X(k)=T

max
k
{w−1

k ∥X
(k)
[k]∥}. (19)

The Lagrangian of Problem (17) is

L(M, λ) = ⟨T ,M⟩ − λ(∥M∥⋆o − 1),
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where λ ≥ 0 is the Lagrangian multiplier. As strong duality
holds, we solve the dual problem:
inf
λ

sup
M

L(M, λ)

= inf
λ

(
sup
M
⟨T ,M⟩ − λ∥M∥⋆o

)
+ λ

= inf
λ

(
sup
M
⟨T ,M⟩ − λ

∑
k

wk∥M(k)
[k]∥⋆

)
+ λ

(i)
= inf
λ
λ + inf∑

k X(k)=T

∑
k
δ
(
λ−1w−1

k ∥X
(k)
[k]∥ ≤ 1

)
= inf∑

k X(k)=T
inf
λ

(
λ + δ

(
λ ≥ max

k
w−1

k ∥X
(k)
[k]∥

))
= inf∑

k X(k)=T
max

k
w−1

k ∥X
(k)
[k]∥,

(20)

where δ(C) is the indicator of condition C (0 if C is true
and +∞ otherwise). Equality (i) in eq. (20) holds due to the
proposition “the conjugate of the sum equals the infimal con-
volution of the conjugates” (see, e.g., Theorem 16.4 in ref.
[34]), the fact that “the conjugate of a norm equals the indi-
cator of its unit dual norm ball”, and the proposition “the dual
norm of TNN is the tensor spectral norm” (see, e.g., ref. [24]).
In this way, the first part is proved. The second part can be
proved similarly, and is thus omitted. �

The dual norms play key roles in the statistical analysis of
OITNN-based RTD models.

3.4 Connections and differences of OITNNs with exist-
ing works

In this subsection, we briefly discuss the connections and dif-
ferences of the proposed OITNNs with tightly related tenso-
rial nuclear norms including TNN [23], SNN [14], LatentNN
[20, 33], Triple TNN [35], and Tensor N-TNN [36].
• TNN: As the motivation is to alleviate the orientation

sensitivity of TNN, the proposed OITNNs can be seen as ori-
entation invariant extensions of the vanilla TNN.
• SNN: Both the proposed OITNN-O and SNN are de-

signed to model the tensor that is simultaneously structured:
OITNN-O imposes simultaneous spectral low-rankness in all
orientations via mode-k 3d unfoldings, whereas SNN encour-
ages low-rankness in the original domain in all orientations
via mode-k unfoldings.
• LatentNN: Both the proposed OITNN-L and LatentNN

are proposed to relax the simultaneously structured restriction
respectively imposed by OITNN-O and SNN. The difference
lies in that OITNN-L models low-rankness in the spectral do-
main, whereas LatentNN works in the original domain.
• Triple TNN: When K = 3, one of the proposed norms,

namely OITNN-O, is exactly the triple TNN [35] obtained
by first letting TNN work on mode-1, mode-2, and mode-3
fibers, and then averaging their TNNs with weights, which ef-
fectively abates the orientation sensitivity for 3-way tensors.

Since OITNN-O degenerates to Triple TNN for 3-way ten-
sors, Triple TNN can be seen as a special case of the proposed
OITNN-O. When compared with Triple TNN, the main inno-
vations of the proposed OITNNs lie in that (i) thanks to the
newly defined mode-k 3d-unfolding, OITNNs can be applied
to the much broader K-way tensors rather than 3-way ten-
sors on which Triple TNN is defined, and (ii) the proposed
OITNN-O is further released to OITNN-L for relaxation the
low OIAR assumptions which may be too strict for some real
tensor data.
• Tensor N-TNN: Recently, the N-TNN is defined via a

new reshaping operator named tensor-k1k2 unfolding to gen-
eralize TNN to higher-way tensors [36]. The motivation of it
is similar to the proposed OITNN-O, and both of them degen-
erate to Triple TNN for 3-way tensors. The main differences
are two-fold. First, the permutation of resulted 3-way ten-
sors are different: for examples, the mode-12 unfolding in
ref. [36] reshapes a d1 × d2 × d3 × d4 tensor to the one of size
d1 × d2 × (d3d4), whereas our proposed mode-1 3d-unfolding
reshapes it to d1 × (d3d4) × d2. Second, the low-rank patterns
modeled by N-TNN and the proposed OITNN-O are differ-
ent: for general K-way tensors, N-TNN considers K(K−1)/2
TNNs by enumerating all mode-k1k2 unfoldings, whereas the
proposed OITNN-O uses K TNNs by considering the K ori-
entations.

4 Robust tensor decomposition via OITNNs

4.1 Observation model

Suppose we observe a K-way tensor Y ∈ Rd1×d2×···×dK gener-
ated by the following model:

Y = L∗ + S∗ + E, (21)

whereL∗ is the low-rank signal tensor,S∗ stores entry-wisely
sparse outliers, and tensor E represents dense small noises.
See Figure 7 for an illustration for 3-way tensors.

The goal of RTD is to reconstruct the low-rank L∗ and
sparse S∗ from the noise observation Y . If the noises E = 0,
RTD degenerates to the tensor robust PCA [24]; If the outlier
tensor S∗ = 0, then RTD becomes the noisy tensor decompo-
sition [20].

Figure 7 (Color online) The observation model of RTD.
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4.2 Incoherence conditions

First, to guarantee separability of low-rankL∗ and sparse S∗,
we suppose L∗ satisfies the non-spiky condition with param-
eter α [37]:

∥L∗∥l∞ ≤ α. (22)

Second, let {L(k)∗} be any latent components obtained
while computing ∥L∗∥⋆ι in eq. (15). Then, the signal L∗ can
be written as

L∗ =
∑K

k=1
L(k)∗. (23)

For separability of latent tensors L(k)∗’s, an incoherence
condition with parameter β is further assumed to hold:

∥L(k)∗
[l] ∥ ≤ βd̃l, ∀l , k ∈ [K], (24)

where d̃l =
√

dl+1
(√

dl +
√

d\l
)
. The motivation of eq. (24) is

to force each latent componentL(k)∗ to be low tubal rank only
in mode-k 3d-unfolding, and behave like a Gaussian random
tensor6) in any mode-l 3d-unfolding (l , k).

4.3 Proposed RTD models

Using the proposed tensor norms and the l1-norm to encour-
age multi-orientational spectral low-rankness and sparsity re-
spectively, we propose the following two models for RTD.
Model I: RTD-OITNN-O

min
L,S

l(L,S) + λo∥L∥⋆o + µo∥S∥l1 ,

s.t. ∥L∥l∞ ≤ α.
(25)

Model II: RTD-OITNN-L

min
{L(k)},S

l
(∑

k
L(k),S

)
+ λι

∑
k

vk∥L(k)
[k]∥⋆ + µι∥S∥l1 ,

s.t. ∥
∑

k
L(k)∥l∞ ≤ α, ∥L

(l)
[k]∥ ≤ βd̃k, ∀l , k,

(26)

where λo, µo, λι, µι denote regularization parameters, square
loss l(L,S) = ∥Y −L − S∥2F/2 is the data fitting term. Model
I explicitly uses OITNN-O as the regularizer of L, whereas
Model II implicitly adopts OITNN-L with incoherent latent
components {L(k)}.

5 Statistical performance

We analyze statistical performance of the proposed models.
Let (L̂o, Ŝo) and ({L̂(k)}, Ŝι) be any solution to Problems

(25) and (26), respectively. We establish both determinis-
tic and non-asymptotic bounds on the estimation errors, i.e.,
Eo,Eι,Eιcom (defined in Table 1 due to space limitation), of
the low-rank component L∗ and the sparse component S∗ in
their sum7).

5.1 Deterministic bounds

When E in the observation model (21) represents any (deter-
ministic or random) noise, we bound the estimation error in
the following theorems where the dual norms in Lemma 2 are
used.

Theorem 1. If λo ≥ 2∥E∥∗⋆o and µo ≥ 2(∥E∥l∞ + 2α) in
Problem (25), then any solution (L̂o, Ŝo) satisfies

E
o ≤ c1λ

2
o

(∑
k

wk

√
ro

k

)2
+ c2µ

2
os.

Theorem 1 indicates that once parameters (λo, µo) exceed
certain quantities of the noise E, estimation error of Model
I can be upper bounded linear by the OITR of L∗ and the
sparsity of S∗.
Theorem 2. If λι ≥ 2 maxk{∥E∥∗⋆ι + v−1

k (K − 1)βd̃k} and
µι ≥ 2(∥E∥l∞ + 2α) in Problem (26), then it holds that

E
ι
com ≤ c3λ

2
ι

∑
k

v2
krιk + c4µ

2
ι s,

E
ι ≤ c3λ

2
ι min

k
v2

kro
k + c4µ

2
ι s.

Theorem 2 shows that when (λι, µι) exceed some thres-
holds in terms of E, estimation error Eιcom involving the la-
tent components {L(k)} is upper bounded by the “latent tubal
ranks rιk” of L∗ and the sparsity of S∗, whereas the error Eι

for (L∗,S∗) is bounded by the “minimal” OITR of L∗ and
the sparsity of S∗.

5.2 Non-asymptotic bounds

For a typical setting where the noise tensor E represents the
tensor of i.i.d. N(0, σ2) entries, we have the following two
Theorems.

Table 1 List of some notations

Error of (L∗,S∗) by Model I Eo = ∥L̂o −L∗∥2F + ∥Ŝo − S∗∥2F
OITR of true tensor L∗ r⃗o = (ro

1, · · · , r
o
K ), ro

k = rtb(L∗[k])

Error of (L∗,S∗) by Model II Eι = ∥∑k L̂
(k) −L∗∥2F + ∥Ŝ − S

∗∥2F
Error of ({L(k)∗},S∗) Eιcom =

∑
k
∥L̂(k) −L(k)∗∥2F + ∥Ŝι − S

∗∥2F

Tubal rank of component L(k)∗ r⃗ι = (rι1, · · · , r
ι
k), rιk = rtb(L(k)∗

[k] )

Sparsity of corruption S∗ s = ∥S∗∥l0

6) Note that a random d1 × d2 × d3 tensor with i.i.d. standard Gaussian entries has full tubal rank with high probability and its tensor spectral norm scales
as O

(√
d3(
√

d1 +
√

d2)
)

(see Lemma A.3).

7) Separated bounds on ∥L̂ −L∗∥2F and ∥Ŝ − S∗∥2F can also be obtained via more strict assumptions like Assumption 1 in ref. [5]. However,
it requires two additional unknown separation parameters κ1 and κ2. Thus, only the summed error is considered in this paper.
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Theorem 3. If parameters λo = 2σK−2 ∑
k(d̃k/wk) and

µo = 8σ
√

log D + 16α in Problem (25), then with high prob-
ability it holds that

E
o ≤ c1σ

2

K4

(∑
k

d̃k

wk

)2(∑
k

wk

√
ro

k

)2

+ c2
(
σ2 log D + α2)s.

Theorem 4. If parameters λι = cσmaxk{d̃k/vk} and µι =
8σ

√
log D+ 16Kα in Problem (26), then with high probabil-

ity it holds that

E
ι
com ≤ c5σ

2
(

max
k

{ d̃k

vk

})2 ∑
k

v2
krιk + c6(σ2 log D + α2)s,

E
ι ≤ c5σ

2
(

max
k

{ d̃k

vk

})2

min
k

v2
kro

k + c6(σ2 log D + α2)s.

To understand Theorems 3 and 4 intuitively, we have the
following remark whose correctness is verified in the experi-
ment section.

Remark 1. Given a K-way cubical tensor L∗ ∈ Rd×d×···×d,
suppose its OITR is (ro

1, · · · , ro
K). Letting parameters wk =

vk = 1/K,∀k ∈ [K], then we have the following bounds on
the entry-wise estimation error with high probability:

Eo

D
- σ2(ro + s log D), and

Eι

D
- σ2(rι + s log D), (27)

where ro =
(
K−1 ∑

k
√

ro
k/d

)2 and rι = mink{rιk/d} act as the
“averaged” and “minimal” OITR complexities of the signal
L∗, respectively, and s = s/D is the sparse ratio of the cor-
ruption S∗.

As discussed in Remark 1, OITNN-L tends to find the ori-
entation with lowest tubal rank, whereas OITNN-O consi-
ders the tubal rank in all orientations. The upper bounds in
Theorems 1–4 are consistent with the intuition that RTD for
complex L∗ (with higher OITR) and denser S∗ is harder. We
give the following remark on the identifiability issue in our
analysis.

Remark 2. In the noiseless setting (i.e., E = 0), the pro-
posed error bounds do not vanish, which means our analysis
cannot guarantee exact recovery. This is because the incohe-
rence conditions in our analysis are less strict than the ones
defined in terms of singular vectors [24, 38] which intrinsi-
cally ensure separability between low-rank and sparse com-
ponents.

6 Optimization algorithms

We develop two algorithms (Algorithms 1 and 2) to solve the
proposed Model I and Model II, respectively. For simplic-
ity, we also define the 3d-unfolding operator Fk(·) for any
T ∈ Rd1×d2×···×dK and its inverse operator F−1

k (·) as

Fk(T ) := T [k], and F
−1
k (T [k]) = T .

Before giving solutions to the sub-problems in Algorithms
1 and 2, we briefly give the proximal operator of TNN as
follows.

Lemma 3 (Proximal operator of TNN [39]). Let tensor T ∈
Rd1×d2×d3 with t-SVD T =U ∗S ∗V⊤, whereU ∈ Rd1×r×d3 ,
and V ∈ Rd2×r×d3 are orthogonal tensors, and S ∈ Rr×r×d3 is
the f-diagonal tensor of singular tubes. Then the proximal op-
erator of function τ∥·∥⋆ at point T 0, denoted by Prox∥·∥⋆τ (T 0),
can be computed as follows:

Prox∥·∥⋆τ (T 0) = argmin
T

1
2
∥T 0 − T ∥2F + τ∥T ∥⋆

=U ∗ idft3(max(dft3(S) − τ, 0)) ∗V⊤,
(28)

where dft3(·) and idft3(·) denote the operators of performing
DFT and inverse DFT on all mode-3 fibers of a 3-way tensor,
respectively.

The proximal operator of l1-norm ∥·∥l1 is given as

Prox
∥·∥l1
τ (T 0) = argmin

T

1
2
∥T 0 − T ∥2F + τ∥T ∥l1

= sgn(T 0) ~max
( |T 0| − τ, 0

)
,

(29)

where sgn(·) exacts the sign of a tensor element-wisely with
sgn(0) = 0, and ~ denotes the element-wise tensor product.

The proximal operator of indicator function of l∞-norm
ball δl∞α (·) is a projector:

Proj∥·∥l∞α (T 0) = argmin
T

1
2
∥T 0 − T ∥2F + δl∞α (T 0)

= sgn(T 0) ~min
( |T 0| , α

)
.

(30)

6.1 Solutions to sub-problems in Algorithm 1

In this subsection, we derive solutions to sub-problems in Al-
gorithm 1.

First, adding auxiliary variables T ,K and {Kk}k to Prob-
lem (25), we get

min
L,S,T ,
K ,{Kk}k

1
2
∥Y −L − S∥2F + λo

∑
k

wk∥Kk∥⋆

+ µo∥T ∥l1 + δl∞α (K),

s.t. Kk = Fk
(L)
,∀k;T = S;K = L.

(31)

Then, the augmented Lagrangian is given as follows:

LI
ρ(L,S,T ,K , {Kk}k, {Yk}k,Z,W)

=
1
2
∥Y −L − S∥2F + λo

∑
k

wk∥Kk∥⋆ + µo∥T ∥l1 + δl∞α (K)

+
∑

k

(⟨Yk,Kk − Fk
(L)⟩ + ρ

2
∥Kk − Fk

(L)∥F)
+ ⟨Z,T − S⟩ + ρ

2
∥T − S∥2F + ⟨W,K −L⟩ +

ρ

2
∥K −L∥2F.
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Algorithm 1 ADMM for Model I

Require: Observation Y , parameters λo, µo, {wk}k, ρ > 0, ϵ > 0.
1: Initialize L0 = K0 =W0 = S0 = T 0 = Z0 = 0,K0

k = Y
0
k = 0,∀k.

2: while not converged do
3: Update (Lt+1,St+1) simultaneously by

min
L,S

l(L,S) +
∑

k

ρ

2

∥∥∥∥∥∥L − F−1
k (K t

k +
Y t

ρ
)

∥∥∥∥∥∥2

F
+
ρ

2

∥∥∥∥∥∥S − (
T t +

Zt

ρ

)∥∥∥∥∥∥2

F
+
ρ

2

∥∥∥∥∥∥L − (
K t +

Wt

ρ

)∥∥∥∥∥∥2

F
;

4: Update {K t+1
k }k, T t+1 andK t+1 simultaneously by

min
Kk
λowk∥Kk∥⋆ +

ρ

2

∥∥∥∥∥∥Kk − Fk
(Lt+1) + Y t

k

ρ

∥∥∥∥∥∥
2

F
, min

T
µo∥T ∥l1 +

ρ

2

∥∥∥∥∥∥T − (
St+1 − Z

t

ρ

)∥∥∥∥∥∥2

F
, min

K
δl∞α (K) +

ρ

2

∥∥∥∥∥∥K − (
Lt+1 −W

t

ρ

)∥∥∥∥∥∥2

F
;

5: Dual update: Zk+1 = Zt + ρ(T t+1 − St+1),Wk+1 =Wt + ρ(K t+1 −Lt+1) and Y t+1
k = Y t

k + ρ(K t+1
k − Fk

(Lt+1)), ∀k ∈ [K];
6: Check the convergence conditions:

∥Xt+1 −Xt∥l∞ ≤ ϵ, ∀X ∈
{L,S,T ,K , {Kk}

}
; ∥T t+1 − St+1∥l∞ ≤ ϵ ∥K t+1 −Lt+1∥l∞ ≤ ϵ; ∥K t+1

k − Fk
(Lt+1)∥l∞ ≤ ϵ,∀k ∈ [K];

7: t = t + 1.
8: end while

Algorithm 2 ADMM for Model II

Require: Observation Y , parameters λι, µι, {vk}k, ρ > 0, ϵ > 0.
1: Initialize S0 = T 0 = Z0 = K0 =W0 = 0, (L(k))0 = K0

k = Y
0
k = 0,∀k.

2: while not converged do
3: Update {(L(k))t+1}k and St+1 simultaneously by

min
{L(k)}k ,S

l
(∑

k
L(k),S

)
+

∑
k

ρ

2

∥∥∥∥∥∥L(k) − F−1
k (K t

k +
Y t

ρ
)

∥∥∥∥∥∥2

F
+
ρ

2

∥∥∥∥∥∥S − (
T t +

Zt

ρ

)∥∥∥∥∥∥2

F
+
ρ

2

∥∥∥∥∥∥∑k
L(k) −

(
K t +

Wt

ρ

)∥∥∥∥∥∥2

F
;

4: Update {K t+1
k }k, T t+1 andK t+1 simultaneously by

min
Kk
λιvk∥Kk∥⋆ +

ρ

2

∥∥∥∥∥∥Kk − Fk
(
(L(k))t+1) + Y t

k

ρ

∥∥∥∥∥∥
2

F
, min
T
µι∥T ∥l1 +

ρ

2

∥∥∥∥∥∥T − (
St+1 − Z

t

ρ

)∥∥∥∥∥∥2

F
, min
K
δl∞α (K) +

ρ

2

∥∥∥∥∥∥∥K −∑
k

(L(k))t+1 +
Wt

ρ

∥∥∥∥∥∥∥
2

F

;

5: Dual update: Zt+1 = Zt + ρ(T t+1 − St+1),Wt+1 =Wt + ρ(K t+1 −∑
k(L(k))t+1) and Y t+1

k = Y t
k + ρ

(K t+1
k − Fk

(
(L(k))t+1)), ∀k ∈ [K];

6: Check the convergence conditions:
∥Xt+1 −Xt∥l∞ ≤ ϵ, ∀X ∈

{{L(k)}k,S,T ,K , {Kk}
}
; ∥T t+1 − St+1∥l∞ ≤ ϵ; ∥K t+1 −∑

k(L(k))t+1∥l∞ ≤ ϵ; ∥K t+1
k − Fk

(
(L(k))t+1)∥l∞ ≤ ϵ,∀k ∈ [K];

7: t = t + 1.
8: end while

Further, we update blocks (L,S) and ({Kk},T ,K) alter-
natively by fixing the other variables.

Update (L,S) Fixing ({Kk},T ,K), we update (L,S) by
minimizing the augmented Lagrangian LI

rho with respect to
(L,S), which can be simplified as follows:

min
L,S

l(L,S) +
∑

k

ρ

2

∥∥∥∥∥∥L − (
K t

k +
Y t

ρ

)
k

∥∥∥∥∥∥2

F

+
ρ

2

∥∥∥∥∥∥S − (
T t +

Zt

ρ

)∥∥∥∥∥∥2

F
+
ρ

2

∥∥∥∥∥∥L − (
K t +

W t

ρ

)∥∥∥∥∥∥2

F
. (32)

Taking the derivatives with respect to L and S and setting
the derivatives to zero, we obtain

(Kρ + ρ + 1)L + S = ρK̃ + ρ
∑

k

K̃k +Y (33)

and

L + (1 + ρ)S = Y + µT̃ , (34)

where

K̃ = K t +
W t

ρ
, K̃k = K t

k +
Y t

ρ
, and T̃ = T t +

Zt

ρ
.

By solving matrix equation group, we get the closed-form
solution of Lt+1 and St+1:

Lt+1 =
(1 + ρ)K̃ + (1 + ρ)

∑
k K̃k +Y − T

(K + 1)(ρ + 1) + 1
,

St+1 =
(K + 1)Y + (Kρ + ρ + 1)T̃ − K̃ −∑

k T̃ k

(K + 1)(ρ + 1) + 1
.

Update ({Kk},T ,K) Fixing (L,S), we update {Kk}k, T ,
and K by minimizing the augmented Lagrangian LI

ρ with re-
spect to ({Kk},T ,K). The problem can be solved separately
as follows:

K t+1
k = argmin

Kk

λowk∥Kk∥⋆ +
ρ

2

∥∥∥∥∥∥Kk − Fk
(Lt+1) + Y t

k

ρ

∥∥∥∥∥∥2

F

= Prox∥·∥⋆
λowk/ρ

(Fk
(Lt+1) − Y t

k

ρ
),
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T t+1 = argmin
T

µo∥T ∥l1 +
ρ

2

∥∥∥∥∥∥T − (
St+1 − Z

t

ρ

)∥∥∥∥∥∥2

F

= Prox
∥·∥l1
µo/ρ

(St+1 − Z
t

ρ
),

K t+1 argmin
K

δl∞α (K) +
ρ

2

∥∥∥∥∥∥K − (
Lt+1 −W

t

ρ

)∥∥∥∥∥∥2

F

= Proj∥·∥l∞α (Lt+1 −W
t

ρ
).

6.2 Solutions to sub-problems in Algorithm 2

We solve the sub-problems in Algorithm 2 as follows. First,
adding auxiliary variables K ,T and {Kk}k to Problem (26)
yields

min
{L(k)}k ,S,
{Kk}k ,T ,K

l
(∑

k
L(k),S

)
+ λo

∑
k

vk∥Kk∥⋆ + µι∥T ∥l1 + δl∞α (K),

s.t. Kk = Fk
(L(k)),∀k;T = S;K =

∑
k
L(k). (35)

Then, the augmented Lagrangian is given as follows:

LII
ρ ({L(k)}k,S,T ,K , {Kk}k, {Yk}k,Z,W)

=
1
2
∥Y −

∑
k

L(k) − S∥2F + λo

∑
k

wk∥Kk∥⋆ + µι∥T ∥l1

+
∑

k

(
⟨Yk,Kk − Fk

(L(k))⟩ + ρ
2
∥Kk − Fk

(L(k))∥F)
+ δl∞α (K) + ⟨Z,T − S⟩ + ρ

2
∥T − S∥2F

+ ⟨W,K −L(k)⟩ + ρ
2

∥∥∥∥∥∥∥K −∑
k

L(k)

∥∥∥∥∥∥∥
2

F

.

Further, we update blocks ({(L(k))},S) and ({Kk},T ,K)
alternatively by fixing the other variables.
Update ({(L(k))},S) Fixing ({Kk},T ,K), we update
({(L(k))},S) by minimizing the augmented Lagrangian LII

r ho
with respect to (L,S), which can be simplified to the follow-
ing problem:

min
{L(k)}k ,S

l
(∑

k
L(k),S

)
+

∑
k

ρ

2

∥∥∥∥∥∥L(k) −
(
K t

k +
Y t

ρ

)
k

∥∥∥∥∥∥2

F

+
ρ

2

∥∥∥∥∥∥S − (
T t +

Zt

ρ

)∥∥∥∥∥∥2

F
+
ρ

2

∥∥∥∥∥∥∥∑k

L(k) −
(
K t +

W t

ρ

)∥∥∥∥∥∥∥
2

F

.

Taking the derivatives with respect to L(k) and S and setting
the derivatives to zero, we obtain∑

k

L(k)+S −Y + ρL(k) − ρK̃k+ρ
∑

k

L(k) − ρK̃ = 0 (36)

and∑
k

L(k) + S −Y + ρS − µT̃ = 0, (37)

where

K̃ = K t +
W t

ρ
, K̃k = K t

k +
Y t

ρ
, and T̃ = T t +

Zt

ρ
.

By solving matrix equation group, we get the closed-form
solution of Lt+1:

(L(k))t+1 = ρ−1(ρK̃ +∑
k

K̃ +Y − (1 + ρ)M − St+1)
with

St+1 =
(1 + K)Y + (K + ρ + Kρ)T̃ − KK̃ −∑

k K̃k

(1 + K)(1 + ρ) + K
,

where

M = K(1 + ρ)K̃ + (1 + ρ)
∑

k K̃k + KY − KT̃
(1 + K)(1 + ρ) + K

.

Update ({Kk},T ,K) Fixing ({L(k)},S), we update {Kk}k, T ,
andK by minimizing the augmented Lagrangian LII

ρ with re-
spect to ({Kk},T ,K). The problem can be solved separately
as follows:

K t+1
k =min

Kk

λιvk∥Kk∥⋆ +
ρ

2

∥∥∥∥∥∥Kk − Fk
(
(L(k))t+1) + Y t

k

ρ

∥∥∥∥∥∥2

F

= Prox∥·∥⋆
λιvk/ρ

(Fk
(
(L(k))t+1) − Y t

k

ρ
),

T t+1 = argmin
T

µι∥T ∥l1 +
ρ

2

∥∥∥∥∥∥T − (
St+1 − Z

t

ρ

)∥∥∥∥∥∥2

F

= Prox
∥·∥l1
µι/ρ

(St+1 − Z
t

ρ
),

K t+1 = argmin
K

δl∞α (K) +
ρ

2

∥∥∥∥∥∥∥K −∑
k

(L(k))t+1 +
W t

ρ

∥∥∥∥∥∥∥
2

F

= Proj∥·∥l∞α (
∑

k

(L(k))t+1 −W
t

ρ
).

6.3 Computational complexity

6.3.1 One iteration computational complexity

In each single iteration of the proposed algorithms, the main
time cost comes from updating the low tubal rank compo-
nents by the proximal operator of TNN which involves FFT,
IFFT, and n3 SVDs of n1 × n2 matrices for tensors of size
n1×n2×n3. Hence for tensors of size d1×d2× · · ·×dK in the
proposed models, both Algorithms 1 and 2 have per-iteration
computational complexity
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O
(
KD log D + D

∑K

k=1
min(dk, d−1

k d−1
k+1D)

)
. (38)

Note that when K = 3, the cost in eq. (38) is signifi-
cantly higher than vanilla TNN [6] due to the need of com-
puting TNNs in all orientations. The complexity in eq. (38)
is of the same order as ADMM-based algorithms for SNN
[5] and LatentNN [20]. We also observed agreements with
eq. (38) in the results of running time comparison in Sect.
7.2: the proposed OITNNs (especially OITNN-L) are much
more costly than TNN, and comparable to (or slightly more
time-consuming than) SNN and LatentNN.

6.3.2 Convergence analysis

According to the analysis in ref. [40], the convergence rate
of general ADMM-based algorithms is O(1/T ), where T de-
notes the iteration number. We analyze the convergence be-
haviors of Algorithms 1 and 2 in Theorems 5 and 6, respec-
tively.

Theorem 5 (Convergence behavior of Algorithm 1). For
any positive constant ρ, if the unaugmented Lagrangian func-
tion LI

0(L,S,T ,K , {Kk}k, {Yk}k,Z,W) has a saddle point,
then the iterations (Lt,St,T t,K t, {K t

k}k, {Y
t
k}k,Zt,W t) in

Algorithm 1 satisfy the residual convergence, objective con-
vergence and dual variable convergence (defined in ref. [41])
of Problem (31) as t → ∞.

Theorem 6 (Convergence behavior of Algorithm 2). For
any positive constant ρ, if the unaugmented Lagrangian func-
tion LII

0 ({L(k)}k,S,T ,K , {Kk}k, {Yk}k,Z,W) has a saddle
point, then the iterate ({L(k),t}k,St,T t,K t, {K t

k}k, {Y
t
k}k,Zt,W t)

in Algorithm 2 satisfy the residual convergence, objective
convergence, and dual variable convergence (defined in ref.
[41]) of Problem (35) as t → ∞.

Since both Theorems 5 and 6 can be proven similar to The-
orem 4 in ref. [6] by straightforwardly reformulating Prob-
lems (25) and (26) to the standard form of the two-block
ADMM framework in eq. (3.1) of ref. [41], we simply omit
the proof.

7 Experiments

In this section, we first verify the correctness of the pro-
posed error bounds through experiments on synthetic data,
and then evaluate the effectiveness of the proposed norms on
real datasets. The code is written in Matlab language, and
all experiments are performed on a Windows 10 laptop with
AMD Ryzen 3.0GHz CPU and 12GB RAM.

7.1 Correctness of the proposed error bounds

To validate the correctness of Theorems 3 and 4, we conduct
simulations to check whether the proposed upper bounds in

eq. (27) can predict the scaling behavior of the estimation er-
ror.

Generation of L∗. We generate the low-rank tensor L∗ ∈
Rd1×d2×···×dK in the following manner. Given K random inte-
gers pk < dk,∀k ∈ [K], we first generate a standard Gaussian
tensor (i.e., tensors with i.i.d. N(0, 1) entries) G0 ∈ Rp1×···×pK .
Then, we repeat the recursive operation Gk = F

−1
k (Uk ∗

Fk
(Gk−1

)
), ∀k ∈ [K − 1], where Uk ∈ Rdk×pk×pk+1 are also

standard Gaussian tensors and Gk ∈ Rn1×···×nk×pk+1×···×pK . We
further generate GK = F

−1
K (UK ∗ FK

(GK−1
)
) with standard

Gaussian tensor UK ∈ RdK×pK×d1 . Finally, we let L∗ =
GK/∥GK∥l∞ .

We form the sparse corruption tensor S∗ by choosing its
support uniformly at random according to ref. [24]. We
generate the noise tensor E with entries drawing i.i.d. from
N(0, σ2) with σ = c∥L∗∥F/

√
D to keep a constant signal

noise ratio. For simplicity, we consider cubical tensors, i.e.,
d1 = · · · = dK = d. We test tensors of size 40 × 40 × 40.
We randomly choose pk ∈ {2, 3, · · · , 10} to generate L∗. We
generate the corruption tensor S∗ with sparsity s = sD where
s ∈ {0.02 : 0.02 : 0.3} and form the noise tensor E with noise
level c = 0.1. We run the proposed Algorithms 1 and 2 and
then compute the estimation errors Eo/D and Eι/D for 500
random choices of pk’s. We computed the OITR (ro

1, · · · , ro
K)

of L∗, since it is not equal to (p1, · · · , pK) in general. We
then compute ro and rι in eq. (27). We will check whether
the errors Eo/D and Eι/D scale like a1ro + b1s and a2rι + b2s,
respectively, with some constants a1, a2, b1, b2.

Figure 8 shows the results of Eo/D versus ro and s, and
Eι/D versus rι and s by keeping other variables fixed. From
Figure 8, we can see that the errors Eo/D and Eι/D have ap-
proximately linear scaling behavior with respect to ro and s,

(a) (b)

(c) (d)

Figure 8 (Color online) The element-wise estimation errors versus the
rank complexity and sparse ratio for tensors in R40×40×40. (a) Eo vs ro with
s = 0.1; (b) Eo vs s with ro = 0.4478; (c) Eι vs rι with s = 0.1; (d) Eι vs s
with rι = 0.275.
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and rι and s, respectively. Thus, it can be said that the pro-
posed bounds can approximately predict the scaling behavior
of the estimation error.

7.2 Effectiveness of the proposed OITNNs

7.2.1 Color images

We first evaluate effectiveness of the proposed norms in com-
parison with other nuclear norm-based models on nine color
images of size 256 × 256 × 3 (see Figure 9). The competitor
norms include SNN [14], LatentNN [20], SqNN [21], TNN
[23], twist TNN (t-TNN) [42] and matrix nuclear norm (NN)
[15]. We first conduct RTD on color images and then carry
out color image inpainting to further demonstrate the power
of the proposed norms. RTD models based on the aforemen-
tioned norms are formulated by replacing OITNN-O in Prob-
lem (25) and the corresponding optimization problems are
solved by ADMM via our own implementations in Matlab.
We use the peak signal noise ratio (PSNR) to measure the
recovery quality. The higher the PSNR is, the better the re-
covery.

Robust image recovery Given a color image M ∈
Rd1×d2×3, we first normalize it such that ∥M∥l∞ = 1. Then,
we select the support set Ω (with size |Ω| = sD) of S∗
uniformly at random with corruption ratio s, and add inde-
pendent zero-mean Gaussian noises with standard deviation
σ = cσ0, where σ0 = ∥M∥F/

√
D is the normalized signal-

noise-ratio [6]. Specifically, we follow the setting in ref. [43]
to generate the outlier tensorS∗, that is, for all (i, j, k) ∈ Ω, let
S∗i jk = Bi jk, where B is a tensor with independent Bernoulli
±1 entries.

The weight parameters for the proposed norms OITNN-O
and OITNN-L are set as w1 : w2 : w3 = 1 : 10 : 1 and
v1 : v2 : v3 = 1 : 0.0288 : 1, respectively, since they per-
form better in most cases in the parameter tuning phase. The
weight parameters α of SNN in eq. (2) are chosen to satisfy
α1 : α2 : α3 = 1 : 1 : 0.01 as suggested in ref. [14]. For La-
tentNN, we adopt its scaled version in eq. (4) which achieves
better performance. The “sparse/low-rank” parameter ratio
µ/λ of NN is 1/

√
max{d1, d2} [44], and 1/

√
3 max{d1, d2} for

SqNN, TNN and t-TNN [6]. We suggest the “sparse/low-
rank ratio” parameter for OITNN-O to be 1/

√
3 max{d1, d2}.

The “sparse/low-rank ratio” parameter for OITNN-L is much

Figure 9 (Color online) Nine test images.

more difficult to select, and we find 3.33×10−4 performs bet-
ter in most cases on the tested color images8). We first test
two cases by setting the pair of corruption ratio and noise
level as (s, c) = (0.05, 0.1) and (0.15, 0.15), and then consider
a more difficult setting where 30% entries are corrupted by
outliers (i.e., s = 0.3) and the R, G, B channels are polluted
by dense Gaussian noises with noise level c = 0.1, 0.2, and
0.3, respectively. Given a color image and a corruption-noise
setting, we test 10 times and report the averaged PSNR and
running time (in seconds).

For quantitative comparison, we report the PSNR and run-
ning time on the nine images in Figures 10 and 11. An vi-
sual example is shown in Row 1 of Figure 12 for qualitative
evaluation. As illustrated in Figure 12, the proposed norms
obtain higher visual quality than the competitor norms. Ac-
cording to Figures 10 and 11, we can find that the tenso-
rial norms outperform matrix nuclear norm since more struc-
tural information is exploited by tensorial treatments, and the
proposed OITNN-O and OITNN-L can achieve better per-
formance than other tensorial norms in most cases since the
multi-orientational spectral low-rankness is considered. As
regards to the computational complexity, it can be seen that
the proposed OITNNs (especially OITNN-L) are much more
costly than NN, SqNN, TNN, and t-TNN, and slightly more
time-consuming than SNN and LatentNN, which may poten-
tially limit the application of OITNNs on large scale datasets.

Image inpainting To further show the effectiveness of the
proposed OITNNs, we also apply them to the classical image
inpainting problem. Specifically, we consider two settings of
missing patterns on the nine test images in Figure 10. In Set-
ting I, we adopt the uniform sampling strategy where 90% of
the entries are missing uniformly at random, whereas in Set-
ting II, we consider non-uniform sampling under which some
rows are first missing and columns of the rest rows are then
randomly sampled with a total missing ratio of 85%. Note
that Setting II is very challenging since all the three matriciza-
tions of an input image suffer from missing columns which
can hardly be recovered by matrix low-rankness in original
domain.

For qualitative comparison, inpainting examples in Set-
tings I and II are shown in Rows 2 and 3 of Figure 12, re-
spectively. The quantitative comparison in PSNR and run-
ning time (in seconds) is presented in Figure 13.

The following can be found from Figures 12 and 13.

• Setting II is harder than Setting I because the non-
uniform sampling in Setting II involves totally missing rows,
columns, and tubes which will be automatically filled with
zeros by directly minimizing traditional nuclear norms.

8) It is of theoretical significance to derive “optimal values” of the parameters for OITNN-L by adopting a technology road-map similar to but more
challenging than the famous robust PCA [44].
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(a)

(b)

Figure 10 (Color online) Quantitative comparison in PSNR values and running time (in seconds) of RTD models based on eight different norms on color
images. Subplot (a) shows the results for the setting (s, c) = (0.05, 0.1) with subplot (b) for (s, c) = (0.15, 0.15).

Figure 11 (Color online) Quantitative comparison in PSNR values and running time (in seconds) of RTD models based on eight different norms on color im-
ages for the setting where 30% entries are corrupted by outliers, and the R, G, B channels are respectively polluted by dense noises with noise level c = 0.1, 0.2,
and 0.3.

• Our OITNN-O performs best in the tensorial norms, and
we owe the gain in performance to its capability to model
spectral low-rankness in multiple orientations. The effect
is particularly significant in dealing with non-uniform sam-
pling: (1) First, matrix nuclear norm based models fail to
recover totally missing rows, columns, and tubes since the

minimization of nuclear norm simply fills the void with ze-
ros. (2) The orientation sensitivity of TNN prevents them
from recovering the totally missing tubes, since the direct
minimization of TNN leads to a preference to fill in the un-
known tubes with zeros. (3) Thanks to its capability to ex-
ploit multi-orientational spectral low-rankness, our OITNNs
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Figure 12 (Color online) Visual performances of the proposed OITNN-O and OITNN-L compared with tightly related TNN, SNN, and LatentNN. Row 1:
robust image recovery with corruption ratio s = 0.05 and noise level c = 0.1. Row 2: image inpainting with 90% random missing entries. Row 3: image
inpainting with missing columns and rows (total missing ratio 85%).

can introduce information of observed rows/columns/tubes to
reconstruct the unseen ones, leading to improved recovery.
• Despite the remarkable recovery performance, the pro-

posed OITNNs (especially OITNN-L) consume more run-
ning time than TNN, t-TNN, NN, and SqNN, and have a com-
parable computational complexity to SNN and LatentNN. Al-
though this kind of trade-off in performance and complexity
is reasonable, the high computational cost may be unafford-
able for high-dimensional data.

7.2.2 YUV videos

The efficacy of the proposed OITNNs are also evalu-
ated through experiments on the widely used eleven YUV
videos9): akiyo, bridge-far, silent, carphone, claire, coast-
guard, container, foreman, salesman, grandma, and hall. We
simply use the first n frames of each video, resulting in eleven
4-way tensors in R144×176×3×n. We conduct video inpainting
with 85% random missing.

The proposed norm is compared with TNN, SNN, and La-
tentNN. To use OITNN-O and OITNN-L, we first permute
the tensors10) to 144 × n × 3 × 176. TNN is tested separately
on three (i.e., the channel number) tensors in R144×n×176. For
LatentNN, we also adopt its scaled version in eq. (4), which
achieves better performance. Parameters for OITNN-O are
set as w1 : w2 : w3 : w4 = 1 : 100 : 1 : 1, and for OITNN-L
v1 : v2 : v3 : v4 = 1 : 0.001 : 1 : 1. We simply set n = 8 due

to the trade-off between the parameter tuning and computa-
tional cost. We tune other parameters for better performances
in most cases.

We show the PSNR values and running time (in seconds)
in Figure 14. It can be seen that the proposed OITNNs have
better performances thanks to their flexibility in exploiting
the multi-orientation correlations in color videos. Accor-
ding to the results of running time comparison, the proposed
ADMM-based algorithms for OITNN minimization unavoid-
ably increase the computational burden in comparison with
ADMM-based TNN minimization due to the need of compu-
ting K TNNs by definition, but the computational complexity
is comparable to (or only slightly higher) the ADMM-based
SNN and LatentNN minimization.

8 Conclusions

To improve the representation ability and flexibility of the re-
cently proposed TNN in modeling multi-orientational corre-
lations, we defined two new tensor norms for general K-way
(K ≥ 3) tensors, dubbed OITNN-O and OITNN-L, which
can simultaneously exploit the low-rankness in spectral do-
main for all orientations. Then, we adopted them to RTD and
rigorously established upper bounds on the estimation error.
Correctness of the error bounds was verified through simula-
tion study on synthetic datasets. Experiments on real datasets

9) The videos are available at https://media.xiph.org/video/derf/.
10) It is observed that this way of tensor construction performs better, despite one has some other ways. Similar tricks are also used in refs. [24, 45].

https://media.xiph.org/video/derf/
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(a)

(b)

Figure 13 (Color online) Quantitative comparison in PSNR values and running time (in seconds) of image inpainting methods based on eight different norms.
Subplot (a) show the results for Setting I where approximately 90% of the entries are missing uniformly at random, and subplot (b) is for Setting II where there
exist simultaneously missing columns, rows, and tubes with approximately 85% missing entries.

Figure 14 (Color online) Quantitative comparison in PSNR values and running time (in seconds) for video recovery.

demonstrated the effectiveness of the proposed norms.
However, despite the promising empirical performance,

the proposed OITNNs have the following two drawbacks.
• (Parameter selection) A main drawback of OITNNs is

that we cannot automatically determine the optimal tuning

parameters. Although we have suggested the parameter set-
tings for OITNN-O and OITNN-L on the tested datasets of
color images and videos, one still has to tune the parameters
on different datasets (e.g., the hyperspectral/multispectral im-
ages [7]).
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• (Computational complexity) According to the experi-
mental results of running time, the proposed OITNNs are
more time-consuming than TNN. Although it seems unavoid-
able since OITNNs have to compute TNNs in all orientations
to model the multi-orientational correlations, the high com-
putational burden may severely limit practical applications of
OITNNs.

Thus, there is a need to develop suitable tools for para-
meter tuning (like the variational Bayesian treatments [46]),
to derive “optimal values” of the parameters using a simi-
lar technique road-map with ref. [44], or to design adap-
tive re-weighting schemes like ref. [47] for OITNNs in fu-
ture work. Future research directions also include developing
fast algorithms for the proposed models using techniques like
[6], and considering more general transformations rather than
DFT [48–50] or structures of the underlying tensor [51]. An-
other interesting direction is to exploit smoothness [2,31] via
a hyper-graph structure [52] for more sound tensor modeling.
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