SCIENTIA SINICA Vitae

论文

www.scichina.com life.scichina.com

复杂的正选择压力驱动不同细胞嗜性 HIV-1 的 进化

张驰宇^{①*}, 丁娜^①, 陈克平^①, 杨荣阁^{②*}

① 江苏大学生命科学研究院, 镇江 212013;
 ② 中国科学院武汉病毒研究所,病毒学国家重点实验室, 武汉 430071
 * 联系人, E-mail: zhangcy1999@hotmail.com; ryang@wh.iov.cn

收稿日期: 2010-03-17; 接受日期: 2010-08-01

国家自然科学基金(批准号: 30600352)、国家重点基础研究发展计划(批准号: 2006CB504200)、病毒学国家重点实验室开放基金(批准号: 2009008)和江苏大学"拔尖人才培养工程"资助项目

摘要 对HIV-1 细胞嗜性的研究是理解 HIV-1 传播和发病机制的关键.通过对 HIV-1 B和C 亚型的 R5 和 X4 型病毒的全基因组进行适应性进化分析,发现 R5 和 X4 病毒经历了不同的进化方式,并且不同的 HIV-1 基因受到不同的正选择压力,意味着复杂的自然选择压力驱动 HIV-1 的进化.分析 HIV-1 Gp120 超变区上的正选择位点,发现相对于其他超变区,更多的正选择位点发生在 B 亚型 X4 病毒的 V3 区,B 亚型 R5 病毒的 V2 区以及 C 亚型 X4 病毒的 V1 和 V4 区域.因为这些区域通常影响和决定 HIV-1 的细胞嗜性,更多的正选择发生在这些特定的超变区意味着作用于 Gp120上的选择压力与 Gp120 的受体识别和结合功能有关.值得注意的是,无论是 B 和 C 亚型还是 R5 和 X4 型病毒,显著更多的正选择位点发生在 Gp120的 C3 区域(33.3%~55.6%, P<0.05),意味着 C3 区对 HIV-1 的生存和适应比先前认识的更为重要.另外,在 R5 和 X4 病毒的 env 基因中,约有一半的正选择位点是相同的,尤其是 Gp41上的第 96,113 和 281 位正选择位点均出现在所分析的 4 种病毒类型中.这些共同的正选择位点不仅意味着对病毒生存和适应的重要性,也意味着 R5 和 X4存在交叉免疫源性位点的可能性,这对于 AIDS 疫苗的发展具有重要意义.

关键词
HIV-1 细胞嗜性
适应性进化
正选择位点
R5 和 X4
Gp120
抗原表位

HIV-1 进入宿主细胞是通过与细胞表面的主要 受体 CD4 和辅助受体(co-receptor)CCR5 或 CXCR4 相互作用实现的.使用不同的辅助受体感染细胞决 定了 HIV-1 不同的细胞嗜性和表型^[1]. R5 和 X4 是 HIV-1 的两个最主要的细胞嗜性类型,分别利用 CCR5 和 CXCR4 作为辅助受体进入细胞^[2]. R5 和 X4 具有不同的病毒学特征, R5 病毒是控制 HIV-1 早期 感染的优势病毒株,并且这种优势可能一直维持到 整个 AIDS 发病过程^[1]. X4 病毒在外周血单个核细胞 中具有比 R5 型更快的复制能力和更高的毒力,通常 在感染后期或感染者发病后出现. X4 病毒的出现往 往伴随着急剧的 CD4⁺ T 淋巴细胞数目减少,并且导 致加快的 AIDS 疾病进程^[3]. HIV-1 的细胞嗜性是理解 HIV-1 传播和发病机理的关键^[4,5]. 在大约一半的

英文版见: Zhang C Y, Ding N, Chen K P, et al. Complex positive selection pressures drive the evolution of HIV-1 with different co-receptor tropisms. Sci China Life Sci, 2010, 53: 1204–1214, doi: 10.1007/s11427-010-4066-5

HIV-1 B 亚型感染者中,伴随着病程的快速发展, HIV-1 的细胞嗜性将从 R5 型向 X4 型转换^[6].然而, HIV-1 从 R5 型向 X4 型的转换却很少发生在 C 亚型 感染者中^[4].因此,比较 HIV-1 B 和 C 亚型病毒的进 化将有助于理解 HIV-1 细胞嗜性转换机制.

HIV-1 具有很高的突变率,并受到来自机体免疫 系统的强大选择压力^[7].在HIV-1的M组、O组,甚 至 HIV-2 和 SIV 的整个基因组(特别是 env 基因)中普 遍可以检测到达尔文正选择^[8~14].此外有研究显示, 无论是儿童还是成人 HIV-1 感染中, 作用于 HIV-1 基 因组的正选择与 AIDS 的疾病发展有关^[15,16]. 对 R5 病毒 env 基因 C2V3C3 区的研究显示,相对于快速发 病的感染者,在疾病进程较慢的感染者中病毒更容 易受到正选择压力[7,17]. 这可能是因为慢进展的感染 者具有相对更强的免疫系统, 而快速发病的感染者的 免疫系统遭到了破坏. 然而, 另外一个基于 B 亚型 V3 区的研究显示, 合胞体诱导型(syncytium-inducing, SI) 病毒比非合胞体诱导型(non-syncytium-inducing, NSI) 病毒进化得更快, 意味着 SI(类似 X4)病毒受到比 NSI(类似 R5)病毒更强的正选择压力^[18].这些不一致 的结果可能是因为这些研究只分析了 env 基因的部分 片段.因此,要揭示HIV-1 R5和X4病毒受到的选择 压力特征需要对 HIV-1 整个 env 基因, 甚至整个基因 组进行分析.本研究对HIV-1B和C亚型的R5和X4 型病毒的全基因组进行了适应性进化分析.结果显 示 R5 和 X4 病毒具有明显不同的进化方式,并且 HIV-1的不同基因受到不同的选择压力.在Gp120的 保守区,显著更多的正选择位点发生在 C3 区,意味 着 C3 区对 HIV-1 的生存和适应比先前认识的更为重 要. 另外,在 R5 和 X4 型病毒的 env 基因中,约有一 半的正选择位点是相同的, 意味着它们不仅在病毒 生存和适应中起作用,也对 AIDS 疫苗的研究具有重 要意义.

1 材料与方法

1.1 序列收集和排序

本研究所用序列均从Los Alamos 国家实验室(Los Alamos National Laboratory, LANL)的HIV 序列数据库中下载(http://www.hiv.lanl.gov/content/sequence/HIV/mainpage.html).因为数据库中含有明确细胞嗜性信

息的HIV-1全长序列非常有限,首先从数据库下载了 所有 HIV-1 B 和 C 亚型的全长序列,其中包括 624 条 B亚型和466条C亚型序列.为了确定这些病毒序列 的细胞嗜性,用3个权威在线预测工具对这些序列的 细胞嗜性特征进行预测. 这 3 个在线预测工具分别是 WebPSSM(http://indra.mullins.microbiol.washington.edu/ webpssm/)^[19], Geno2pheno(http://coreceptor.bioinf.mpi-inf. mpg.de/index.php)^[20]和HIV-1 PhenoPred(http://yjxy.ujs. edu.cn/R5-X4%20pred.rar)^[21]. 对于每条序列, 只有 3 种软件都预测到一致的细胞嗜性结果时, 该序列才 被选择用于后续分析. 选择的序列被分成 R5 和 X4 数据集.因为进化距离过近的序列会导致辨识度过 低^[22],每个数据集中进化距离过近的序列被删除.最 后,在B亚型中,共有37个R5型和33个X4型序列 被保留, 在 C 亚型中, 共有 28 个 R5 型和 13 个 X4 型序列被保留.这些序列的GenBank登录号在附表1 中列出.

HIV-1 的不同基因在 HIV-1 的生活周期中起着 不同的生物学作用.为了比较这些基因受到的选择 压力的差异,HIV-1 的基因组被分割成相应的 5 个基 因片段,即 gag, reverse transcriptase(RT), integrase (IN), gp120 和 gp41.在 C 亚型 X4 病毒序列中,因为 删除进化距离过近的序列后, gag, RT 和 IN 的序列过少, 不适合做进一步的适应性进化分析,所以, C 亚型 X4 病毒只保留 gp120 和 gp41 基因(各 13 个序列)序列用 于适应性进化分析.

所有序列经 MEGA 4.0 软件^[23]的 Clustal W 工具 比对后进行手工校正.4 种病毒类型的各个基因的系 统进化树均用最大似然法(PHYML 软件 2.4.4)构建^[24]. 序列的长度和密码子位置均依据 HXB2 标准序列 (http://www.hiv.lanl.gov/content/sequence/LOCATE/ locate.html)确定.

1.2 适应性进化分析

正选择一般通过比较非同义替代率(nonsynonymous substitution rate, d_N)与同义替代率(synonymous substitution rate, d_S)的比值来确定. d_N/d_S 的比值(ω)>1 表示非同义突变被固定的速率大于同义突变,说明该 基因受到了正选择(positive selection), ω =1 为中性选择 (neutral selection), ω <1 代表负选择(negative selecttion)^[25]. PAML 是 Yang 等人^[25,26]基于最大似然法构建 的用于检测单一位点(氨基酸或密码子)是否受到正选

择的经典工具. PAML4.0 中的 6 个模型 M0 (one-ratio), M1a(nearly neutral), M2a(positive selection), M3(discrete), M7(β)和 M8(β & ω)被用于分析 HIV-1 R5 和 X4 型病 毒序列的适应性进化^[26]. 这 6 个模型中, M0, M1a 和 M7 为零假设模型(不允许正选择出现), 分别与 3 个 正选择模型M3, M2a和M8形成嵌套模型用于检测正 选择^[27]. 似然率检验(likelihood ratio test, LRT)通过 计算 2 倍的正选择模型与零假设模型最大似然率之 差(2ΔL=2(L1-L0)),并在特定自由度下进行卡方检验, 来确定正选择是否存在^[27]. 如果 LRT 值具有统计学 意义(P<0.05),表明零假设被拒绝,而正选择假设成 立,说明存在正选择. 通过正选择模型(M2a, M3 和 M8)可以鉴定出一系列受到正选择的单个氨基酸(密 码子)位点. 每个氨基酸位点的后验概率通过贝叶斯 经验检验(Bayes empirical Bayes, BEB)获得^[28]. 当一 个位点的ω>1,并且其后验概率≥0.95 时被鉴定为正 选择位点(positively selected site).

因为 M3 模型经常会导致对正选择位点的过度

估计^[27,28], M3 模型不被用于鉴定 HIV-1 基因的正选 择位点.为了进一步减少和避免假阳性结果,只有同 时被 M2a 和 M8 检测到的正选择位点才被作为最后 确认的正选择位点^[28].为了确定和验证 PAML 获得 的结果,用另外一个公认的软件包 DataMonkey package 做相似分析进行验证^[29].

2 结果

2.1 HIV-1 主要基因的正选择分析

HIV-1 的 R5 和 X4 型病毒在细胞嗜性和复制能 力上显示出不同的表型特征^[3]. 病毒的 Gp120 和 RT 直接与 HIV-1 的表型有关,前者通过对辅助受体的特 异性识别决定细胞嗜性,而后者直接决定病毒的复 制.因此,对 HIV-1 B 和 C 亚型的 R5 和 X4 病毒的 gp120, gp41, RT, IN 和 gag 基因进行了适应性进化分 析. B 亚型 gp120 和 gp41 基因的结果分别列于表 1 和 2, C 亚型 gp120 和 gp41 基因的结果分别列于表 3

细胞嗜性	模型	lnL	参数估计	$2\Delta l$	正选择位点")
R5	M0	-13809.11	<i>w</i> =0.52	1998.50	无
	M3	-12809.86	$p_0=0.5982, p_1=0.2658 (p_2=0.1360), \omega_0=0.07, \omega_1=0.85, \omega_2=2.75$	P=0.0000	未显示 b)
	M1a	-12963.07	$p_0=0.6514 \ (p_1=0.3486)$	302.66	不允许。
	M2a	-12811.74	$p_0=0.6169, p_1=0.2620 (p_2=0.1211), \omega_2=2.99$	<i>P</i> =0.0000	19T 31T 85V 87V 164S 169V 178K 183P 195S 200V 219A 232T 283T 290T 293E 308R 333I 336A 337K 340N 343K 344Q 347S 360I 362K 363Q 440S 442Q 444R
	M7	-12947.00	<i>p</i> =0.1795, <i>q</i> =0.3087	306.48	不允许
	M8	-12793.76	$p_0=0.8659 \ (p_1=0.1342), \ p=0.2272, \ q=0.5413, \ \omega=2.66$	<i>P</i> =0.0000	4K 10L 13W 19T 31T 85V 87V 164S 169V 175F 178K 183P 195S 200V 219A 232T 283T 290T 291S 293E 308R 333I 336A 337K 340N 343K 344Q 346A 347S 360I 362K 363Q 389Q 440S 442Q 444R
X4	M0	-11488.66	<i>w</i> =0.67	1420.24	无
	M3	-10778.54	$p_0=0.5291, p_1=0.3181 (p_2=0.1527), \omega_0=0.06, \omega_1=0.89, \omega_2=3.11$	P=0.0000	未显示
	M1a	-10925.70	$p_0=0.6162 \ (p_1=0.3838)$	294.34	不允许
	M2a	-10778.53	$p_0=0.5481, p_1=0.3272 \ (p_2=0.1247), \ \omega_2=3.43$	<i>P</i> =0.0000	10L 12R 19T 33K 49T 85V 87V 161I 169V 170Q 200V 232T 275V 300N 301N 302N 303T 306R 308R 317F 328Q 333I 337K 343K 347S 354G 363Q 389Q 440S 442Q 467I
	M7	-10922.28	<i>p</i> =0.1662, <i>q</i> =0.2439	295.74	不允许
	M8	-10774.41	$p_0=0.8487 \ (p_1=0.1513), p=0.2050, q=0.3892, \ \omega_2=2.97$	<i>P</i> =0.0000	10L 12R 19T 33K 49T 85V 87V 161I 169V 170Q 192K 200V 208V 232T 275V 291S 300N 301N 302N 303T 306R 308R 316A 317F 318V 328Q 333I 335R 337K 340N 343K 347S 354G 363Q 389Q 440S 442Q 467I

表1 HIV-1 B 亚型 R5 和 X4 病毒 gp120 基因的似然值和参数估计

lnL:最大似然值的对数;2Δl: 似然率检验,指 lnL之差的2倍. P值代表在自由度下的卡方检验. M0与M3比较的自由度为3, M1a与M2a以及M7与M8比较的自由度为2. a)后验概率大于≥95%的正选择位点被列出,其中后验概率≥99%的正选择位点用黑体显示;b)因为M3模型经常会导致对正选择位点的过度估计,M3模型不被用于鉴定正选择位点;c)零假设模型不允许位点的ω值>1

细胞嗜性	模型	lnL	参数估计	$2\Delta l$	正选择位点
R5	M0	-10580.74	<i>a</i> =0.57	1518.12	无
	M3	-9821.68	$p_0=0.6478, p_1=0.2360 (p_2=0.1162), \omega_0=0.08, \omega_1=0.86, \omega_2=3.74$	P=0.0000	未显示
	M1a	-10014.68	$p_0=0.7306 \ (p_1=0.2694)$	384.62	不允许
	M2a	-9822.37	$p_0=0.6731, p_1=0.2198 \ (p_2=0.1072), \ \omega_2=3.96$	<i>P</i> =0.0000	7L 24M 77K 96A 107S 113N 125N 129S 130L 133S 137E 189A 209H 213P 235I 236R 239N 253C 281A 306A 318V 321V 325A 326C 334R 340L 343I
	M7	-10032.47	<i>p</i> =0.2010, <i>q</i> =0.3902	418.48	不允许
	M8	-9823.23	$p_0=0.8789 \ (p_1=0.12113), \ p=0.3113, \ q=0.8201, \ \omega=3.55$	<i>P</i> =0.0000	7L 24M 32Q 77K 96A 107S 113N 119E 125N 129S 130L 133S 137E 189A 209H 213P 235I 236R 239N 245I 253C 281A 304L 306A 318V 321V 325A 326C 334R 340L 343I
X4	M0	-8388.95	<i>w</i> =0.63	1183.34	无
	M3	-7797.28	$p_0=0.6907, p_1=0.2243 (p_2=0.0497), \omega_0=0.11, \omega_1=1.29, \omega_2=5.08$	<i>P</i> =0.0000	未显示
	M1a	-7963.59	$p_0=0.7054$ ($p_1=0.2946$)	327.88	不允许
	M2a	-7799.65	$p_0=0.6497, p_1=0.2545 \ (p_2=0.0959), \ \omega_2=4.57$	P=0.0000	24M 96A 108L 109E 110Q 113N 129S 130L 133S 163N 167N 189A 209H 210L 212T 213P 235I 236R 239N 281A 308A 325A 326C 343I
	M7	-7980.27	<i>p</i> =0.1591, <i>q</i> =0.2925	352.78	不允许
	M8	-7803.88	$p_0=0.8908 \ (p_1=0.1092), \ p=0.2182, \ q=0.4835, \ \omega=4.18$	<i>P</i> =0.0000	24M 32Q 96A 101A 108L 109E 110Q 113N 129S 130L 133S 163N 167N 189A 209H 210L 212T 213P 235I 236R 239N 247D 281A 308A 322V 325A 326C 343I

表 2 HIV-1 B 亚型 R5 和 X4 病毒 gp41 基因的似然值和参数估计 a)

a) 表中参数注释参见表 1

表 3 HIV-1 C 亚型 R5 和 X4 病毒 gp 120 基因的似然值和参数估计 a)

细胞嗜性	模型	lnL	参数估计	$2\Delta l$	正选择位点
R5	M0	-10763.38	<i>w</i> =0.47	1581.90	无
	M3	-9972.43	$p_0=0.7142, p_1=0.2445 (p_2=0.0413),$ $\omega_0=0.10,$ $\omega_1=1.20, \omega_2=5.76$	<i>P</i> =0.0000	未显示
	M1a	-10127.16	$p_0=0.7172 \ (p_1=0.2828)$	305.00	不允许
	M2a	-9974.66	$p_0=0.68058, p_1=0.2529 (p_2=0.0666), \omega_2=4.31$	P=0.0000	7Y 10L 84V 181I 240T 281A 295N 300N 335R 344Q 346A 350R 365A 389Q 404G 405S
	M7	-10133.41	<i>p</i> =0.1878, <i>q</i> =0.4031		不允许
	M8	-9977.03	$p_0=0.9223 \ (p_1=0.0777), p=0.2293, \ q=0.5610, \ \omega=3.72$	312.76 P=0.0000	7Y 10L 84V 181I 240T 281A 295N 300N 335R 344Q 346A 350R 365A 389Q 404G 405S
X4	M0	-8030.39	<i>w</i> =0.54	993.48	无
	M3	-7533.65	$p_0=0.6346, p_1=0.2910 (p_2=0.0744),$ $\omega_0=0.10,$ $\omega_1=1.30, \omega=6.87$	<i>P</i> =0.0000	未显示
	M1a	-7647.70	$p_0=0.6544 \ (p_1=0.3456)$	224.46	不允许
	M2a	-7535.47	$p_0=0.5929, p_1=0.3111(p_2=0.0959), \omega_2=5.31$	<i>P</i> =0.0000	7Y 137D 138T 140T 141N 173Y 186N 295N 300N 320I 335R 344Q 346A 360I 362K 389Q 404G 405S 406N 408T 410G 429K 461S 500K
	M7	-7658.08	<i>p</i> =0.1654, <i>q</i> =0.2725	242.32	不允许
	M8	-7536.92	$p_0=0.8857 \ (p_1=0.1144), p=0.2070, \ q=0.3918, \ \omega=4.49$	<i>P</i> =0.0000	7Y 17G 85V 87V 132T 137D 138T 140T 141N 169V 173Y 186N 281A 295N 300N 320I 335R 343K 344Q 346A 360I 362K 363Q 389Q 404G 405S 406N 408T 410G 429K 460N 461S 500K

a) 表中参数注释参见表 1

和 4. 其他基因的结果列于附表 2~7.

3个正选择模型(M2a, M3和M8)结果显示,除了 B亚型R5病毒的IN基因外,所有HIV-1基因都受到 了正选择压力.对不同的基因进行比较发现, env (gp120和gp41)和gag基因受到的正选择压力要强于 RT和IN基因受到的正选择压力.特别是 env基因, 其受到的正选择压力最强^[8-11].另外,不同基因上鉴 定的正选择位点的数量也支持 env和gag基因受到更 强的正选择压力.这些结果表明,不同的HIV-1基因 在病毒进化中经历不同的正选择模式.

2.2 env(gp120 和 gp41)基因上正选择位点的鉴定

在 B 亚型 R5 和 X4 病毒的 gp120 基因上分别有 29 和 31 个正选择位点被鉴定,在 C 亚型 R5 和 X4 病毒的 gp120 基因上分别有 16 和 24 个正选择位点被 鉴定(表 5). 无论 B 亚型和 C 亚型,在 X4 病毒中鉴定 的正选择位点数均多于 R5 病毒,说明 X4 病毒的 gp120 受到了比 R5 病毒更强的正选择压力. 然而对 于 gp41 基因来说, 27 和 17 个正选择位点分别发生在 B 和 C 亚型的 R5 病毒中,均多于 B(24 个)和 C(11 个) 亚型的 X4 病毒中的正选择位点数(表 5). 这说明 R5 病毒的 gp41 基因受到比 X4 病毒更强的正选择压力. 虽然整个 R5 和 X4 病毒的 env 基因的正选择位点数 没有明显不同,但是 R5 和 X4 病毒的 gp120 和 gp41 基因却经历了不同的进化方式.

另一方面,如果从亚型的角度分析,B亚型 env 基因的正选择位点要多于 C 亚型的正选择位点数(表 5). 对于 gp120 基因,B 亚型 R5 和 X4 病毒分别有 29 和 31 个正选择位点,均多于 C 亚型 R5 和 X4 病毒的 16 和 24 个位点.对于 gp41 基因,B 亚型 R5 和 X4 病毒分别 有 27 和 24 个正选择位点,也均多于 C 亚型 R5 和 X4 病毒的 17 和 11 个位点.这些结果说明 B 亚型 env 基 因在进化中受到比 C 亚型更强的正选择压力.

2.3 gag和 pol 基因上正选择位点的鉴定

HIV-1 gag 基因编码 4 个结构蛋白,这些蛋白是 人体免疫系统识别的重要靶点.在 B 和 C 亚型的 R5 病毒中,分别有 9 和 10 个正选择位点发生在 gag 基 因中,多于 B 亚型 X4 病毒中鉴定的 6 个正选择位点 (附表 2 和 3).有趣的是,其中 4 个正选择位点(91,138, 280 和 374)在 B 亚型的 R5 和 X4 病毒中是相同的.尤 其是第 91 和 138 位位点在 C 亚型的 R5 病毒中也受

表 4	HIV-1 C 亚型	R5 和 X4 病毒 gp41	基因的似然值和参数估计 "
-----	------------	-----------------	---------------

细胞嗜性	模型	lnL	参数估计	$2\Delta l$	正选择位点
R5	M0	-7964.17	<i>w</i> =0.53	811.42	无
	M3	-7558.46	$p_0=0.6953, p_1=0.2258 (p_2=0.0789), \omega_0=0.1083, \omega_1=1.1385, \omega_2=3.39$	<i>P</i> =0.0000	未显示
	M1a	-7629.70	$p_0=0.7019 \ (p_1=0.2982)$	141.48	不允许
	M2a	-7558.76	$p_0=0.6775, p_1=0.2281 \ (p_2=0.0944), \ \omega_2=3.12$	<i>P</i> =0.0000	96A 101A 108L 109E 113N 129D 144K 156A 160N 163N 212T 239N 256S 2661 281A 321V 345L
	M7	-7652.02	<i>p</i> =0.2013, <i>q</i> =0.3581	174.02	不允许
	M8	-7565.01	$p_0=0.8674 \ (p_1=0.1326), \ p=0.3539, \ q=0.9639, \ \omega_2=2.66$	<i>P</i> =0.0000	96A 101A 107S 108L 109E 113N 129D 137E 140N 144K 154K 156A 160N 163N 210L 212T 232D 239N 256S 266I 281A 321V 324G 326C 345L
X4	M0	-4927.55	<i>w</i> =0.57	430.82	无
	M3	-4712.14	$p_0=0.6766, p_1=0.2808 \ (p_2=0.0427), \ \omega_0=0.09, \ \omega_1=1.46, \ \omega_2=5.67$	<i>P</i> =0.0000	未显示
	M1a	-4758.74	$p_0=0.6516 \ (p_1=0.3484)$	86.78	不允许
	M2a	-4715.35	$p_0=0.6277, p_1=0.2940 \ (p_2=0.0783), \ \omega_2=3.97$	<i>P</i> =0.0000	96A 108L 109E 113N 133S 163N 210L 258H 281A 321V 330R
	M7	-4768.49	<i>p</i> =0.0970, <i>q</i> =0.1519	98.00	不允许
	M8	-4719.49	$p_0=0.9026 \ (p_1=0.0975), \ p=0.1526, \ q=0.3012, \ \omega=3.64$	<i>P</i> =0.0000	841 96A 108L 109E 113N 133S 163N 210L 258H 281A 321V 330R

a) 表中参数注释参见表 1

到正选择.这些在不同细胞嗜性特征病毒的 gag 基因 上均受到正选择的位点可能对 HIV-1 的适应具有重 要作用.

HIV-1 的 *pol* 基因编码逆转录酶(RT)和整合酶 (IN),它们是 HIV 生活周期中的关键酶.比较 R5 和 X4 病毒中这两个酶受到的选择压力将有助于了解 R5 和 X4 病毒在复制力上的差异.在HIV-1 B 亚型中, RT 的第 162 和 376 位位点在 R5 病毒中受到正选择,而 第 211 位位点在 X4 病毒中受到正选择(附表 4 和 5). 对于 IN,第 118 和 123 位位点在 X4 病毒中受到正选择(表 S4),但在 R5 病毒中没有检测到正选择位点.在 C 亚型 R5 病毒中, RT 上第 123,344 和 377 号位点和 IN 上第 50,72 和 125 位位点受到正选择(附表 4~7).

2.4 HIV-1 env 基因上正选择位点的分布

HIV-1 表面糖蛋白 Env 包括 Gp120 和 Gp41. Gp120不仅决定病毒的细胞嗜性,也是宿主免疫反应的最重要靶点.Gp120 上包含 5 个不连续的保守区 (C1~C5)和5个不连续的超变区(V1-V5).比较正选择 位点在 Gp120 上的分布发现,相对于超变区占整个 Gp120 的比例(28.8%),明显更多的正选择位点发生 在 B(41.9%, P=0.041)和C亚型(62.5%, P=0.0002)X4 病毒的 Gp120 超变区(表 5).表明 X4 病毒 Gp120 的 超变区遭受更强的正选择压力.

V3 区决定 HIV-1 辅助受体的使用,是决定病毒 细胞嗜性的关键区域,也是引起中和抗体的关键免 疫表位^[30,31].本研究进一步分析了正选择位点在 5 个 超变区的分布(图 1).在 B 亚型 X4 病毒中, 61.5%的

正选择位点出现在 V3 区,显著高于 V3 占整个超变 区的比例 24.5%(*P*=0.0011).该结果表明,V3 区受到 更强的正选择压力^[7,18].在C亚型 X4病毒中,更多的 (66.7%)正选择位点出现在 V1 和 V4,显著高于这两 个超变区在整个超变区所占的比例(34%,*P*=0.0316) (表 5).另外,在 B 亚型 R5 病毒中,有 83.3%的位点 出现在 V2 区,显著高于 V2 占整个超变区的比例 26.5%(*P*=0.0013).

有趣的是,当分析正选择位点在保守区的分布时,发现在所有被分析的4种病毒类型中,C3区明显包含了比其他保守区更多的正选择位点(B亚型R5病毒:43.5%, P<0.0001; B亚型X4病毒:33.3%, P=0.0206; C亚型R5病毒:45.5%, P=0.0032; C亚型X4病毒:55.6%, P=0.0004)(表 5).该结果表明,C3区在Gp120进化过程中起到比先前认识的更为重要的作用.在Gp41中,只有很少的正选择位点(9.1%~22.2%)发生在两个七肽重复区(heptad repeat region,HR),正选择位点在HR1和HR2区的分布比例甚至低于2个HR区在整个Gp41中所占的比例(24.3%)(表 5,图1).

另一方面,发现无论是 HIV-1 B 还是 C 亚型, env 基因上约一半的正选择位点在 R5 和 X4 病毒中是一 致的(图 1).例如,在 B 亚型中,共有 56 个正选择位 点发生在 R5 病毒中.然而,其中 30 个同时也发生在 X4 病毒中.而在 C 亚型中,有 16 个正选择位点既发 生在 R5 病毒,也发生在 X4 病毒中.另外,在所有分 析的 4 种病毒类型中,Gp41 上的第 96,113 和 281 位 位点均受到正选择(图 1).

				Gp120						Gp41				
亚型	细胞嗜性	氨基酸位点特征			超多	を区 a)			C2 ^{a)}	C1 C5			JUD1, JUD2 其他 _	
			V1	V2	V3	V4	V5	Total ^{b)}	C5	C1~C3	пИ	ΠΚΙ+ΠΚ2	区域	пИ
В	R5	正选择位点	0	5	1	0	0	6	10	23	29	6	21	27
		非正选择位点	26	34	35	34	12	141	43	341	482	78	240	318
	X4	正选择位点	0	3	8	1	1	13	6	18	31	3	21	24
		非正选择位点	26	36	28	33	11	134	47	346	480	81	240	321
С	R5	正选择位点	0	1	1	3	0	5	5	11	16	2	15	17
		非正选择位点	26	38	35	31	12	143	48	353	485	82	246	328
	X4	正选择位点	4	2	2	6	1	15	5	9	24	1	10	11
		非正选择位点	22	37	34	28	11	132	48	355	487	83	251	334

表 5 正选择位点在 Gp120 和 Gp41 上的分布比较

a) 黑体数字表示当某一个超变区与剩余其他超变区比较时,或者是整个超变区(V1~V5)与保守区(C1~C5)比较时具有统计学显著差异 (P<0.05, Fisher 精确检验); b) 黑体数字表示 C3 区与剩余其他保守区(C1, C2, C4 和 C5)比较具有统计学显著差异(P<0.05, Fisher 精确检验)

通过比较作用于 HIV-1 B 和 C 亚型, 以及 R5 和 X4 病毒几个关键基因上的选择压力, 发现 gag 和 env(gp120和 gp41)基因受到更高的自然选择压力.这 表明 HIV-1 的各个基因遭受不同的选择压力^[8].比较 发生在 R5 和 X4 病毒 env 基因上的正选择位点发现, 发生在 X4病毒 gp120基因上的正选择位点略多于 R5 病毒(表 5).这与先前发现 SI 病毒 V3 区比 NSI 病毒 V3 区受到更强的正选择压力一致^[18]. 然而不同于 gp120,在 gp41 基因上, R5 病毒受到的正选择压力略 强于 X4 病毒.这表明 R5 和 X4 病毒经历不同的进化 模式.

在未接受治疗的 HIV-1 感染者中,病毒的进化 至少受到来自两方面的选择压力,即宿主免疫系统 和靶细胞资源^[4].宿主的免疫反应主要包括体液免 疫和细胞免疫,通常被认为是 HIV-1 适应性进化的 最关键驱动力^[7].gag 基因编码病毒的结构蛋白,它 们并不涉及病毒的复制和辅助受体识别.在3种 HIV-1病毒类型的gag基因上共有19个正选择位点被 鉴定(附表2和3),并且这些位点的定位至少与3种免 疫表位(抗体、细胞毒性T 淋巴细胞(cytotoxic T-lymphocyte, CTL)和T辅助细胞)中的一种有关.例 如,83.3%和66.7%的正选择位点分别与CTL和T辅助细胞表位有关.这说明 gag 基因受到的选择压力 主要来自宿主的免疫反应.特别是在所有 Gag 的正 选择位点中,第91和138位正选择位点在3种HIV-1 病毒类型中均被发现,表明这两个位点对 HIV-1 的 适应性进化非常重要.之前的研究证明,Gag 蛋白第 30位氨基酸的突变能够使 HIV 或 SIV 在宿主中获得 一种种属特异性的复制优势^[32].至于Gag 蛋白第 91 和 138 位氨基酸对 HIV-1 适应性的作用则需要进一 步的点突变实验来验证.

逆转录酶(RT)是 HIV-1 中负责复制的关键酶^[4]. X4 病毒通常比 R5 病毒具有更高的复制力.在3种病 毒类型的 RT 中,共有6个正选择位点被发现.这些 位点都位于 RT 的 DNA 聚合酶结构域^[33],并且在 R5 和 X4 病毒中鉴定的正选择位点完全不同,说明这些 正选择位点可能与 R5 和 X4 病毒不同的复制特性有 关.另外,这些位点都定位于 CTL 免疫表位中,说明 细胞免疫反应也参与了 RT 的进化.

HIV-1 表面糖蛋白(Env)暴露在病毒颗粒的表面, 对HIV-1的感染和生存起着关键性作用. 它不仅决定 HIV-1 的细胞嗜性,并且是体液和细胞免疫反应的主

图 1 HIV-1 B 和 C 亚型 R5 和 X4 病毒 Env 上正选择位点的分布

黄色阴影代表 B 亚型 R5 与 X4 型病毒共同的正选择位点;绿色阴影代表 C 亚型 R5 与 X4 型病毒共同的正选择位点;粉红色阴影代表 4 个病 毒类型中共同存在的正选择位点

要靶点.此外,在 HIV-1 基因组中, env 基因的突变 率最高,这赋予 HIV-1 较高的逃逸宿主免疫反应的 潜力^[34,35].因此, env 基因的适应性进化可能会涉及 多种选择因素,例如细胞资源、宿主免疫反应,甚至 病毒自身进化力等^[4,8].

HIV-1 的细胞嗜性由 Gp120 的超变区决定,特 别是 V3 区在 HIV-1 的细胞嗜性决定中扮演关键角 色^[30,36,37]. V3 外的其他超变区,如 V1, V2 和 V4 区可 以影响 HIV-1 辅助受体的使用^[38~44].比较正选择位点 在Gp120上的定位发现,在X4病毒中,显著更多的正 选择位点位于超变区(P<0.05). 然而, 类似的正选择分 布并没有出现在 R5 病毒中. 进一步分析显示, 更多的 正选择位点发生在 B 亚型 R5 病毒的 V2 区(83.3%, P=0.0013)和 X4 病毒的 V3 区(61.5%, P=0.0011), 以及 C亚型X4病毒的V1V4区(66.7%, P=0.0316)(表5).这 些结果清楚地表明,发生在超变区的正选择位点与 Gp120 的辅助受体的识别和结合功能紧密相关.此外, V1V2, V4 和 V5 区已经被证实与 HIV-1 病毒的自身中 和反应有关.因此,体液免疫介导的正选择压力也参 与了 Gp120 的进化. 另一方面, 相对于其他保守区, 明显更多的正选择位点(33.3%~55.6%, P<0.05)定位于 Gp120的C3区,表明C3区在Gp120功能上的作用比 先前认识的更重要. 在 HIV-1 C 亚型感染早期, Gp120 的 C3 区可以通过与 V4 区结合形成一个特殊的结构基 序来诱导自身中和免疫反应的产生^[45].因此,更多的 正选择位点位于 C3 区也支持了体液免疫介导的正选 择压力在 Gp120 进化中起重要作用的观点.

病毒表面蛋白上的七肽重复区(HR)在介导病毒 膜融合中起重要作用^[46]. 与 SARS-CoV 锚定(spike, S) 蛋白的S2结构域相似, HIV-1的Gp41也包括2个HR. 然而,在HIV-1 Gp41中,只有很小比例(9.1%~22.2%) 的正选择位点发生在这 2 个 HR 区(表 5, 图 1),显然 不支持膜融合作为一种主要的选择因素参与 HIV-1 Gp41 的进化^[47]. 然而, Gp41 的第 96, 113 和 281 位在 4 种病毒类型中均被检测为正选择位点,并且其中的 第 96 和 113 位位点还位于 Gp41 的两个 HR 区之间, 可能影响 Gp41 的膜融合功能. 这表明膜融合功能可 能只是参与 HIV-1 Gp41 进化的一种次要选择因素. 此外,同时发现在 env 基因上的正选择位点中,有接 近一半的位点既出现在 R5 病毒, 也出现在 X4 病毒 中(图 1). 这些共同的正选择位点不仅说明它们对 R5 和 X4 病毒的生存和适应非常重要, 也意味着免疫反 应可能针对 R5 和 X4 病毒的相同区域发挥作用, 这 对 AIDS 疫苗的研究具有重要意义.

参考文献。

- 1 Berger E A, Murphy P M, Farber J M. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol, 1999, 17: 657–700
- 2 Berger E A, Doms R W, Fenyo E M, et al. A new classification for HIV-1. Nature, 1998, 391: 240
- 3 Bjorndal A, Deng H, Jansson M, et al. Coreceptor usage of primary human immunodeficiency virus type 1 isolates varies according to biological phenotype. J Virol, 1997, 71: 7478–7487
- 4 Regoes R R, Bonhoeffer S. The HIV coreceptor switch: a population dynamical perspective. Trends Microbiol, 2005, 13: 269–277
- 5 Moore J P, Kitchen S G, Pugach P, et al. The CCR5 and CXCR4 coreceptors-central to understanding the transmission and pathogenesis of human immunodeficiency virus type 1 infection. AIDS Res Hum Retroviruses, 2004, 20: 111–126
- 6 Connor R I, Sheridan K E, Ceradini D, et al. Change in coreceptor use correlates with disease progression in HIV-1--infected individuals. J Exp Med, 1997, 185: 621–628
- 7 Ross H A, Rodrigo A G. Immune-mediated positive selection drives human immunodeficiency virus type 1 molecular variation and predicts disease duration. J Virol, 2002, 76: 11715–11720
- 8 Choisy M, Woelk C H, Guegan J F, et al. Comparative study of adaptive molecular evolution in different human immunodeficiency virus groups and subtypes. J Virol, 2004, 78: 1962–1970
- 9 Nielsen R, Yang Z. Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics, 1998, 148: 929–936
- 10 Yang W, Bielawski J P, Yang Z. Widespread adaptive evolution in the human immunodeficiency virus type 1 genome. J Mol Evol, 2003, 57: 212–221
- 11 Travers S A, O'Connell M J, McCormack G P, et al. Evidence for heterogeneous selective pressures in the evolution of the env gene in

different human immunodeficiency virus type 1 subtypes. J Virol, 2005, 79: 1836-1841

- 12 Zanotto P M, Kallas E G, de Souza R F, et al. Genealogical evidence for positive selection in the nef gene of HIV-1. Genetics, 1999, 153: 1077–1089
- 13 de Oliveira T, Salemi M, Gordon M, et al. Mapping sites of positive selection and amino acid diversification in the HIV genome: an alternative approach to vaccine design? Genetics, 2004, 167: 1047–1058
- 14 Soares A E, Soares M A, Schrago C G. Positive selection on HIV accessory proteins and the analysis of molecular adaptation after interspecies transmission. J Mol Evol, 2008, 66: 598–604
- 15 Carvajal-Rodriguez A, Posada D, Perez-Losada M, et al. Disease progression and evolution of the HIV-1 *env* gene in 24 infected infants. Infect Genet Evol, 2008, 8: 110–120
- 16 Leal E, Janini M, Diaz R S. Selective pressures of human immunodeficiency virus type 1 (HIV-1) during pediatric infection. Infect Genet Evol, 2007, 7: 694–707
- 17 Williamson S. Adaptation in the env gene of HIV-1 and evolutionary theories of disease progression. Mol Biol Evol, 2003, 20: 1318–1325
- 18 Yamaguchi Y, Gojobori T. Evolutionary mechanisms and population dynamics of the third variable envelope region of HIV within single hosts. Proc Natl Acad Sci USA, 1997, 94: 1264–1269
- 19 Jensen M A, Li F S, van't Wout A B, et al. Improved coreceptor usage prediction and genotypic monitoring of R5-to-X4 transition by motif analysis of human immunodeficiency virus type 1 env V3 loop sequences. J Virol, 2003, 77: 13376–13388
- 20 Sing T, Low A J, Beerenwinkel N, et al. Predicting HIV coreceptor usage on the basis of genetic and clinical covariates. Antivir Ther, 2007, 12: 1097–106
- 21 Xu S, Huang X, Xu H, et al. Improved prediction of coreceptor usage and phenotype of HIV-1 based on combined features of V3 loop sequence using random forest. J Microbiol, 2007, 45: 441–446
- 22 Nozawa M, Suzuki Y, Nei M. Reliabilities of identifying positive selection by the branch-site and the site-prediction methods. Proc Natl Acad Sci USA, 2009, 106: 6700–6705
- 23 Tamura K, Dudley J, Nei M, et al. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596–1599
- 24 Guindon S, Lethiec F, Duroux P, et al. PHYML Online--a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res, 2005, 33: W557–559
- 25 Yang Z, Nielsen R, Goldman N, et al. Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics, 2000, 155: 431–449
- 26 Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol, 2007, 24: 1586–1591
- 27 Anisimova M, Bielawski J P, Yang Z. Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. Mol Biol Evol, 2001, 18: 1585–1592
- 28 Anisimova M, Bielawski J P, Yang Z. Accuracy and power of bayes prediction of amino acid sites under positive selection. Mol Biol Evol, 2002, 19: 950–958
- 29 Pond S L, Frost S D. Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics, 2005, 21: 2531–2533
- 30 Hwang S S, Boyle T J, Lyerly H K, et al. Identification of the envelope V3 loop as the primary determinant of cell tropism in HIV-1. Science, 1991, 253: 71–74
- 31 Javaherian K, Langlois A J, LaRosa G J, et al. Broadly neutralizing antibodies elicited by the hypervariable neutralizing determinant of HIV-1. Science, 1990, 250: 1590–1593
- 32 Wain L V, Bailes E, Bibollet-Ruche F, et al. Adaptation of HIV-1 to its human host. Mol Biol Evol, 2007, 24: 1853–1860
- 33 Sarafianos S G, Das K, Tantillo C, et al. Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract RNA:DNA. EMBO J, 2001, 20: 1449–1461
- 34 Parren P W, Moore J P, Burton D R, et al. The neutralizing antibody response to HIV-1: viral evasion and escape from humoral immunity. AIDS, 1999, 13: S137–S162
- 35 Klenerman P, Wu Y, Phillips R. HIV: current opinion in escapology. Curr Opin Microbiol, 2002, 5: 408-413
- 36 Fouchier R A, Groenink M, Kootstra N A, et al. Phenotype-associated sequence variation in the third variable domain of the human immunodeficiency virus type 1 gp120 molecule. J Virol, 1992, 66: 3183–3187
- 37 Xiao L, Owen S M, Goldman I, et al. CCR5 coreceptor usage of non-syncytium-inducing primary HIV-1 is independent of phylogenetically distinct global HIV-1 isolates: delineation of consensus motif in the V3 domain that predicts CCR-5 usage. Virology, 1998, 240: 83–92

- 38 Boyd M T, Simpson G R, Cann A J, et al. A single amino acid substitution in the V1 loop of human immunodeficiency virus type 1 gp120 alters cellular tropism. J Virol, 1993, 67: 3649–3652
- 39 Smyth R J, Yi Y, Singh A, et al. Determinants of entry cofactor utilization and tropism in a dualtropic human immunodeficiency virus type 1 primary isolate. J Virol, 1998, 72: 4478–4484
- 40 Groenink M, Fouchier R A, Broersen S, et al. Relation of phenotype evolution of HIV-1 to envelope V2 configuration. Science, 1993, 260: 1513–1516
- 41 Pastore C, Nedellec R, Ramos A, et al. Human immunodeficiency virus type 1 coreceptor switching: V1/V2 gain-of-fitness mutations compensate for V3 loss-of-fitness mutations. J Virol, 2006, 80: 750–758
- 42 Sullivan N, Thali M, Furman C, et al. Effect of amino acid changes in the V1/V2 region of the human immunodeficiency virus type 1 gp120 glycoprotein on subunit association, syncytium formation, and recognition by a neutralizing antibody. J Virol, 1993, 67: 3674–3679
- 43 Ghaffari G, Tuttle D L, Briggs D, et al. Complex determinants in human immunodeficiency virus type 1 envelope gp120 mediate CXCR4-dependent infection of macrophages. J Virol, 2005, 79: 13250–13261
- 44 Cho M W, Lee M K, Carney M C, et al. Identification of determinants on a dualtropic human immunodeficiency virus type 1 envelope glycoprotein that confer usage of CXCR4. J Virol, 1998, 72: 2509–2515
- 45 Bunnik E M, Pisas L, van Nuenen A C, et al. Autologous neutralizing humoral immunity and evolution of the viral envelope in the course of subtype B human immunodeficiency virus type 1 infection. J Virol, 2008, 82: 7932–7941
- 46 Chambers P, Pringle C R, Easton A J. Heptad repeat sequences are located adjacent to hydrophobic regions in several types of virus fusion glycoproteins. J Gen Virol, 1990, 71: 3075–3080
- 47 Zhang C Y, Wei J F, He S H. Adaptive evolution of the spike gene of SARS coronavirus: changes in positively selected sites in different epidemic groups. BMC Microbiol, 2006, 6: 88

亚型	细胞嗜性	序列数目	GenBank 登录号
			AB286956, AB253432, AF003888, AF042101, AF224507, AY173952, AY037282, EU576191, AY586543, AY713412, AY835748, AY713411,
	R5	37	EU574998, AY561236, AY970946, AY839827, AY857022, D10112, DQ854714, DQ837381, DQ886031, EI469746, EF363124, EF637046, EF514699, EF637049,
			EU786675, FJ460501, FJ469770, FJ495937, FJ469703, FJ469731, M93258,
HIV-I B			EU281726, K02013, AB287363, AB287365, AF049494, AF086817, AF146728,
	X4	33	AY037268, AY736821, AY173956, AY180905, AY560108, AY835767, AY835768, D86068, DQ127534, DQ396398, DQ823363, EF514712, FJ469686,
			FJ469692, FJ469736, FJ469737, FJ469739, FJ469748, FJ469753, FJ469759,
			AB254141, DQ369991, AY734550, DQ275642, EU786673, AY878054,
	R5	28	AF286227, AY945738, FJ496185, U46016, AY713414, AF110978, AF110981, AF286224, AF286231, AY444800, AY463217, AY563170, AF286233,
HIV-1 C			AF286234, AF290027, AY043176, AF391231, AY118165, AY253303,
	V4	12	AY228556, AY228557, AY253321 FJ846637, FJ846642, AY878064, DQ093600, AY529666, FJ846647, AY529678,
	Λ4	13	DQ382362, DQ382372, DQ382378, AY529677, AY529673, AF411966

附表 1 本文所用 HIV-1 基因组的 GenBank 登录号

细胞嗜性	模型	lnL	参数估计	$2\Delta l$	正选择位点
	M0(one-ratio)	-10957.60	<i>w</i> =0.24		无
	M3(discrete)	-10293.04	$p_0=0.7101, p_1=0.2228 (p_2=0.0671), \\ \omega_0=0.03, \omega_1=0.56, \omega_2=2.58$	1329.12 <i>P</i> =0.0000	12E 30K 67S 84T 91R 138I 146A 215V 223I 252N 280T 374A 375T 389I 425D 441Y 473P 478P 483L 487T
D.5	M1a(Nearly neutral)	-10382.84	$p_0=0.7869 (p_1=0.2131)$	145 4	不允许
KJ	M2a(Positive selection)	-10310.14	$p_0=0.7719, p_1=0.1899 (p_2=0.0381), \omega_2=3.82$	P=0.0000	84T 91R 138I 223I 280T 374A 389I 473P 483L
	M7(beta)	-10364.21	<i>p</i> =0.1217, <i>q</i> =0.4289	157.08	不允许
	M8(beta&w)	-10285.67	$p_0=0.9509 \ (p_1=0.0491), \ p=0.1539, \ q=0.6937, \ \omega=3.06$	P=0.0000	67S 84T 91R 138I 146A 223I 280T 374A 375T 389I 425D 473P 478P 483L
	M0(one-ratio)	-8991.79	<i>w</i> =0.25		无
	M3(discrete)	-8566.49	$p_0=0.6919, p_1=0.2246$ $(p_2=0.08350),$ $\omega_0=0.02, \omega_1=0.49, \omega_2=2.06$	850.6 <i>P</i> =0.0000	12E 15R 30K 67S 79Y 84T 91R 93E 102D 119D 125S 124N 138I 219H 223I 252N 280T 374A 389I 403R 418K 441Y 473P 478P 473L 477T
X4	M1a(Nearly neutral)	-8607.63	$p_0=0.7827 (p_1=0.2173)$	51.00	不允许
	M2a(Positive selection)	-8581.99	$p_0=0.7777, p_1=0.0448 \ (p_2=0.1775), \ \omega_2=2.86$	P=0.0000	67S 91R 138I 280T 374A 478P
	M7(beta)	-8603.18	<i>p</i> =0.1197, <i>q</i> =0.4075	73 02	不允许
	M8(beta& \omega)	-8566.22	$p_0=0.9279 \ (p_1=0.0720), p=0.1844, a=0.9994, a=2.20$	P=0.0000	67S 84T 91R 125S 138I 223I 280T 374A 478P 473L

附表 2	HIV-1 B	亚型 R5	和 X4 病	青 gag	基因的似然	值和参数估计 ^{a)}
------	---------	-------	--------	-------	-------	----------------------

a) 后验概率大于>95%的正选择位点; 后验概率>99%的正选择位点用黑体显示

附表 3 HIV-1 C 亚型 R5 病毒 gag 基因的似然值和参数估计 a)

模型	ln <i>L</i>	参数估计	$2\Delta l$	正选择位点
M0 (one-ratio)	-9276.18	<i>w</i> =0.27	1121 26	无
M3 (discrete)	-8710.55	$p_0=0.7768, p_1=0.1893 (p_2=0.0338), \omega_0=0.05, \omega_1=0.93, \omega_2=3.99$	P=0.0000	28K 54S 79Y 90Q 91R 138I 146A 241S 371T 440S 458P
M1a (Nearly neutral)	-8778.63	$p_0=0.7926 (p_1=0.2074)$	135.54	不允许
M2a (Positive selection)	-8710.86	$p_0=0.7825, p_1=0.1852(p_2=0.0324), \omega_2=4.14$	P=0.0000	28K 79Y 90Q 91R 138I 146A 241S 371T 440S 458P
M7 (beta)	-8782.96	<i>p</i> =0.1194, <i>q</i> =0.4021	147.9	不允许
M8 (beta& <i>\omega</i>)	-8709.01	$p_0=0.9639 \ (p_1=0.0360), \ p=0.1426, \ q=0.5506, \ \omega=3.71$	<i>P</i> =0.0000	28K 54S 79Y 90Q 91R 138I 146A 223V 241S 371T 440S 458P

a) 后验概率大于>95%的正选择位点; 后验概率>99%的正选择位点用黑体显示

附表 4 HIV-1 B 亚型 R5 和 X4 病毒 RT 基因的似然值和参数估计 a)

细胞嗜性	模型	ln <i>L</i>	参数估计	$2\Delta l$	正选择位点
	M0(one-ratio)	-7803.46	<i>w</i> =0.14	602 52	无
	M3(discrete)	-7502.20	$p_0=0.7218, p_1=0.2236 (p_2=0.0546), \omega_0=0.02, \omega_1=0.27, \omega_2=1.46$	P=0.0000	未显示
	M1a(Nearly neutral)	-7534.98	$p_0=0.8974 \ (p_1=0.1026)$	22.66	不允许
R5	M2a(Positive selection)	-7523.65	$p_0=0.8971, p_1=0.0897 (p_2=0.0132), \omega_2=3.05$	P=0.0000	1628 376T
	M7(beta)	-7525.67	<i>p</i> =0.1371, <i>q</i> =0.7393	40.5	不允许
	M8(beta& ω)	-7500.92	$p_0=0.9604 \ (p_1=0.0396), \ p=0.2362, \ q=2.1903, \ \omega=1.75$	P=0.0000	162S 211R 245V 297E 332Q 360A 376T 386T
	M0(one-ratio)	-6749.04	<i>w</i> =0.17	188 7	无
	M3(discrete)	-6504.69	$p_0=0.6640, p_1=0.2606 (p_2=0.0753), \omega_0=0.01, \omega_1=0.23, \omega_2=1.51$	P=0.0000	未显示
	M1a(Nearly neutral)	-6522.31	$p_0=0.8821 \ (p_1=0.1179)$	18.96	不允许
X4	M2a(Positive selection)	-6512.83	$p_0=0.8834, p_1=0.0940 \ (p_2=0.0226), \ \omega_2=2.65$	P=0.0001	211R
	M7(beta)	-6526.67	p=0.1286, q=0.6409	46.92	不允许
	M8(beta&w)	-6503.21	$p_0=0.9479 \ (p_1=0.0521), \ p=0.2461, \ q=2.1554, \ \omega_2=1.86$	P=0.0000	207Q 211R 215T 245V 357M 376T

a) 后验概率大于>>95%的正选择位点; 后验概率>>99%的正选择位点用黑体显示

模型	lnL	参数估计	$2\Delta l$	正选择位点
M0(one-ratio)	-7159.79	<i>w</i> =0.15	573 44	无
M3(discrete)	-6873.07	$p_0=0.8749, p_1=0.1176 (p_2=0.0075), \omega_0=0.05, \omega_1=0.90, \omega_2=5.24$	P=0.0000	123D 334Q 377T
M1a(Nearly neutral)	-6900.15	$p_0=0.8841 \ (p_1=0.1159)$	53 04 P-0 0000	不允许
M2a(Positive selection)	-6873.63	$p_0=0.8817, p_1=0.1109 (p_2=0.0073), \omega_2=5.41$	55.047 = 0.0000	123D 334Q 377T
M7(beta)	-6909.81	<i>p</i> =0.1378, <i>q</i> =0.6736		不允许
M8(beta& \omega)	-6877.18	$p_0=0.9919 \ (p_1=0.0081), p=0.1647, q=0.9165, \ a=4.91$	65.26 <i>P</i> =0.0000	123D 334Q 377T

附表 5 HIV-1 C 亚型 R5 病毒 RT 基因的似然值和参数估计 a)

a) 后验概率大于>>95%的正选择位点; 后验概率>>99%的正选择位点用黑体显示

附表 6 HIV-1 B 亚型 R5 和 X4 病毒 IN 基因的似然值和参数估计 a)

细胞嗜性	模型	lnL	参数估计	$2\Delta l$	正选择位点
R5	M0(one-ratio)	-4567.46	<i>ω</i> =0.12	304 34	无
	M3(discrete)	-4415.29	$p_0=0.82278, p_1=0.1239 (p_2=0.0533), \\ \omega_0=0.03, \omega_1=0.34, \omega_2=1.62$	P=0.0000	10E 16S 27L 38S 44L 71L 100L 111T 121T 124T 199I
	M1a(Nearly neutral)	-4427.40	$p_0=0.8994 (p_1=0.1006)$	6.9	不允许
	M2a(Positive selection)	-4423.95	$p_0=0.9011, p_1=0.0816 (p_2=0.0173), \omega_2=2.64$	P=0.0317	无
	M7(beta)	-4435.26	<i>p</i> =0.1511, <i>q</i> =0.8502	37.46	不允许
	M8(beta&@)	-4416.53	$p_0=0.9444 \ (p_1=0.0556), \ p=0.3879, \ q=4.7314, \ \omega=1.58$	P=0.0000	16S 71I 100L 124T
X4	M0(one-ratio)	-3994.45	<i>w</i> =0.14	198.36 <i>P</i> =0.0000	无
	M3(discrete)	-3895.27	$p_0=0.7992, p_1=0.1833 (p_2=0.0175), \omega_0=0.04, \omega_1=0.51, \omega_2=3.19$		100L 118S 123A 124T
	M1a(Nearly neutral)	-3909.48	$p_0=0.8738 (p_1=0.1262)$	12.02 <i>P</i> =0.0025	不允许
	M2a(Positive selection)	-3903.47	$p_0=0.8744, p_1=0.1123 (p_2=0.0133), \omega_2=3.95$		118S 123A
	M7(beta)	-3910.05	<i>p</i> =0.1933, <i>q</i> =0.9867	26.96	不允许
	M8(beta&w)	-3896.57	$p_0=0.9821 \ (p_1=0.0179), p=0.2779, q=1.8653, \omega=3.13$	P=0.0000	100L 118S 123A 124T

a) 后验概率大于>>95%的正选择位点; 后验概率>>99%的正选择位点用黑体显示

附表 7 HIV-1 C 亚型 R5 病毒 IN 基因的似然值和参数估计 a)

模型	lnL	参数估计	$2\Delta l$	正选择位点
M0(one-ratio)	-4143.50	<i>a</i> =0.16	292.76 <i>P</i> =0.0000	无
M3(discrete)	-3997.12	$p_0=0.7776, p_1=0.1910 (p_2=0.0314), \omega_0=0.04, \omega_1=0.44, \omega_2=2.70$		11E 50M 72V 125T 269R
M1a(Nearly neutral)	-4016.89	$p_0=0.8952 \ (p_1=0.1048)$	26 58 P-0 0000	不允许
M2a(Positive selection)	-4003.60	$p_0=0.8940, p_1=0.0851 \ (p_2=0.0209), \ \omega_2=3.32$	20.387 -0.0000	50M 72V 125T
M7(beta)	-4021.05	<i>p</i> =0.1546, <i>q</i> =0.7387	48.34 <i>P</i> =0.0000	不允许
M8(beta& \omega)	-3996.88	$p_0=0.9696 (p_1=0.0304), p=0.2734, q=1.9860, \omega=2.74$		11E 50M 72V 125T

a) 后验概率大于>95%的正选择位点; 后验概率>99%的正选择位点用黑体显示