In 1995, Yu et al. [1] first reported bulk-heterojunction (BHJ) solar cells with a conjugated polymer donor and a fullerene acceptor as the active materials. From then on, BHJ organic solar cells (OSCs) have attracted academic and industrial interests due to the advantages like lightweight, flexibility and roll-to-roll fabrication. Nowadays, 17% power conversion efficiencies (PCEs) have been achieved in the state-of-the-art OSCs [2,3]. The remarkable progress in OSCs relies on the continuously emerging new materials and device fabrication technologies, and the understanding on film morphology and device physics [4,5].

Donor and acceptor materials determine the performance of OSCs [5]. The past 25 years have witnessed an odyssey in developing high-performance donors and acceptors. Fullerenes are initially used as acceptors in BHJ solar cells. Hummelen et al. [6,7] first synthesized fullerene monoadducts PC61BM and PC71BM, which are the most widely used acceptors. To enhance the open-circuit voltage (V_{oc}) for OSCs, He et al. [8,9] developed efficient fullerene bisadduct acceptors IC61BA and IC71BA, which gave PCEs up to 7.40%. To eliminate the energetic disorder of isomers, Xiao et al. [10] developed an isomer-free fullerene bisadduct e-PFMF via regioselective synthesis and pushed PCE to 8.11%, which is the highest PCE for OSCs with fullerene bisadduct acceptors to date. Despite the early success in OSCs, the intrinsic weak light-harvesting capability of fullerenes limits their further application. In this context, Lin et al. [11,12] developed nonfullerene acceptors for OSCs, the fused-ring acceptor–donor–acceptor (A-D-A) small molecules, e.g., ITIC and IDIC. These nonfullerene acceptors have strong visible-NIR light-harvesting capability and good electron mobility, delivering higher short-circuit current density (J_{sc}) and PCE in solar cells than fullerene acceptors. To further enhance light absorption, Xiao et al. [13–26] developed stronger light-harvesting A-D-A acceptors by using more electron-rich carbon–oxygen-bridged (CO-bridged) core units. The acceptor CO8DFIC, based on an octacyclic CO-bridged unit, CO8, presents a narrow bandgap of 1.26 eV and strong absorption at 600–1000 nm [15]. Ternary solar cells based on CO8DFIC gave an outstanding J_{sc} of 28.20 mA cm$^{-2}$ and a PCE of 14.08%. This is the first report demonstrating that the PCE for OSCs exceeds 14% [16]. These work indicated the great potential of low-bandgap nonfullerene acceptors. Recently, Yuan et al. [27] developed a highly efficient low-bandgap acceptor Y6 by using a fused-ring benzothiadiazole core unit. The blend of Y6 and a certain wide-bandgap donor–acceptor (D-A) copolymer donor can harvest most of the visible and NIR light and give excellent PCEs (15%–17%) [3,27–31]. On the other hand, high-performance donors matching those low-bandgap nonfullerene acceptors are still limited. Only a few D-A copolymer donors, such as PM6, PTQ10, P2F-EHp, D16 and W1 developed by Hou [32], Li [33], Huang [29] and Ding [30,31] groups, have delivered >15% PCEs. Developing more high-performance donors would keep lifting the PCE of OSCs, which is a great mission for the field!

Previously, our group reported high-performance wide-bandgap copolymers based on fused-ring acceptor units [30,34–39]. These units have strong electron-withdrawing capability and extended molecular planes, gifting copolymers deep the highest occupied molecular orbital (HOMO) levels, enhanced π-π stacking and high hole mobility, thus leading to simultaneously improved V_{oc}, J_{sc} and fill factor (FF). For example, a copolymer D16 based on a fused-ring thiolaactone unit, 5H-dithieno[3,2-b:2',3'-d]thiopyran-5-one (DTTP), delivered a PCE of 16.72% when blending with Y6 (Fig. 1a) [30]. In continuing our effort, here we report a more efficient copolymer donor D18 by using a fused-ring acceptor unit,
dithieno[3′,2′:3,4:2,3′:5,6]benzo[1,2-c][1,2,5]thiadiazole (DTBT) [40]. Compared with DTTP, DTBT has a larger molecular plane and gifts D18 a higher hole mobility. D18:Y6 solar cells demonstrate a PCE of 18.22% (certified 17.6%), which is the highest efficiency for organic solar cells to date.

The synthetic route for D18 is shown in Scheme S1 (online). Stille coupling of 5,8-dibromodithieno[3′,2′:3,4:2,3′:5,6]benzo[1,2-c][1,2,5]thiadiazole (DTBT-Br) and tributyl(4-(2-butyloctyl)thiophen-2-yl)stannane gave compound 1 in 93% yield. Bromination of compound 1 with NBS gave the monomer, compound 2, in 90% yield. Stille copolymerization of compound 2 with (4,8-bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl)bis(trimethylstannane) (FBDT-Sn) gave D18 in 84% yield. All compounds were characterized by spectroscopic

Fig. 1. An 18% efficiency polymer donor based on DTBT unit. (a) The chemical structures for D16, D18 and Y6; (b) absorption spectra for D18 solution, D18 film and Y6 film; (c) energy level diagram; (d) J-V curve for D18:Y6 solar cells; (e) EQE spectrum for D18:Y6 solar cells; (f) AFM phase images for D18:Y6 blend films without (left) and with (right) SVA.
techniques, i.e., 1H NMR, 13C NMR and mass spectrometry. The number-average molecular weight (M_n) and the polydispersity index (PDI) for D18 are 72.4 kDa and 1.51, respectively. The absorption spectra for D18 in chloroform and as film are shown in Fig. 1b. In solution, D18 shows an absorption band at 410–620 nm, with a peak at 584 nm and a shoulder at 559 nm. For film, the two peaks shift to 581 and 555 nm, respectively. The absorption onset for D18 film is 625 nm, corresponding to an E_{g} of 1.98 eV. The absorption of Y6 film is complementary with that of D18. The HOMO and the lowest unoccupied molecular orbital (LUMO) levels of D18 estimated from cyclic voltammetry (CV) measurement are -5.51 and -2.77 eV, respectively (Fig. S6 online). Y6 shows a HOMO of -5.65 eV and a LUMO of -4.10 eV (Fig. 1c) [27].

The solar cells with a structure of ITO/PEDOT:PSS:D18:Y6/PDIN/Ag were made to evaluate the performance of D18. The D/A ratio, active layer thickness, additive content and solvent vapor annealing (SVA) time were optimized. The best D18:Y6 cells gave a PCE of 18.22%, with a Voc of 0.859 V, a Jsc of 27.70 mA cm$^{-2}$ and a FF of 76.6% (Fig. 1d). These cells have a D/A ratio of 1:1.6 (w/w), an active layer thickness of 103 nm, no additive and a chloroform SVA for 5 min (Tables S1–S4 online). To the best of our knowledge, the 18.22% PCE is the highest value achieved from organic solar cells to date. The best cells were also measured at the National Institute of Metrology (NIM), Beijing, and a certified PCE of 17.6% was recorded (Fig. S7 online). The 17.6% certified efficiency is the highest value for organic solar cells to date. This work demonstrates the great potential of DTBT as an electron acceptor unit DTBT was developed. D18 has a high hole mobility of 1.59×10^{-3} cm2 V$^{-1}$ s$^{-1}$. This mobility is higher than that of D16 reported previously ($\mu_h 1.19 \times 10^{-3}$ cm2 V$^{-1}$ s$^{-1}$) [30], suggesting that the larger molecular plane of DBTT than DTPP might enhance the performance of A-D-A electron acceptors. Mater Chem Front 2018;2:1716–9.

We thank the National Key Research and Development Program of China (2017YFA0206600), the National Natural Science Foundation of China (51773045, 21572041, 21772030 and 51922032) and the Youth Association for Promoting Innovation (CAS) for financial support.

Appendix A. Supplementary materials

Supplementary materials to this article can be found online at https://doi.org/10.1016/j.scib.2020.01.001.

References

Conflict of interest

The authors declare that they have no conflict of interest.

Zuo Xiao got his B.S. and Ph.D. degrees from Peking University under the supervision of Professor Liangbing Gan. He did postdoctoral research in Eiichi Nakamura Group at the University of Tokyo. In March 2011, he joined Liming Ding Group at National Center for Nanoscience and Technology as an Associate Professor. His current research focuses on organic solar cells.

Xiaotao Zhang received his Ph.D. degree from University of Science and Technology of China in 2003. He then joined Leibniz Institute for Solid State and Materials Research, Dresden, Germany as an Alexander von Humboldt Fellow. In December 2007, he joined University of Science and Technology of China as a full professor. His research interests include the synthesis of fullerene-based nanocarbons toward applications in energy devices.

Shangfeng Yang got his Ph.D. degree from Hong Kong University of Science and Technology in 2003. He then joined Leibniz Institute for Solid State and Materials Research, Dresden, Germany as an Alexander von Humboldt Fellow. In December 2007, he joined University of Science and Technology of China as a full professor. His research interests include the synthesis of fullerene-based nanocarbons toward applications in energy devices.

Liming Ding got his Ph.D. degree from University of Science and Technology of China. He started his research on OSCs and PLEDs in Olle Inganäs Lab in 1998. Later on, he worked with Frank Karasz and Tom Russell at PSE, UMASS Amherst. He joined Konarka as a Senior Scientist in 2008. In 2010, he joined National Center for Nanoscience and Technology as a Full Professor. His research includes perovskite solar cells, organic solar cells and photodetectors.