概率布尔网络重构

李志强1,2, 宋金利1,2*, 杨剑3

1. 河南财经政法大学数学与信息科学学院, 郑州 450046
2. 河南省教育统计数据处理和研究中心, 郑州 450046
3. 河南交通职业技术学院基础部, 郑州 450000
* 通信作者. E-mail: songjinli1107@163.com

摘要 概率布尔网络是研究社会网络上的观念动力学以及基因调控网络的重要模型. 对概率布尔网络的研究主要是利用 Markov 理论对系统的状态转移矩阵进行分析, 矩阵的半张量积是将逻辑动态系统转化为代数形式的重要工具. 本文主要利用矩阵的半张量积研究概率布尔网络到概率转移矩阵的逆问题, 即将状态空间框架下的概率转移矩阵还原为原始的概率布尔网络. 首先给出从状态概率转移矩阵构造概率布尔网络的算法, 其次考虑到从概率状态转移矩阵到概率布尔网络构造的不唯一性, 进一步改进了概率布尔网络逻辑表达的重构算法, 最后通过实例检验了算法的有效性, 并对未来的研究方向作出展望.

关键词 概率布尔控制网络, 矩阵半张量积, 逻辑实现, 概率转移矩阵, 重构

1 引言

模，还常用于研究社会网络中观念的扩散与聚合等问题，比如利用概率布尔网络的转移矩阵的性质研究社会网络上的观念动力学的演化。

概率布尔网络的一般模型描述为

\[
\begin{align*}
x_1(t+1) & = f_1(x_1(t), x_2(t), \ldots, x_n(t)), \\
x_2(t+1) & = f_2(x_1(t), x_2(t), \ldots, x_n(t)), \\
& \vdots \\
x_n(t+1) & = f_n(x_1(t), x_2(t), \ldots, x_n(t)),
\end{align*}
\]

其中 \(f_i \) 是逻辑函数，\(f_i \in \{ f_1^1, f_1^2, \ldots, f_1^{\ell_i} \} \)，\(i = 1, 2, \ldots, n \) 并且 \(f_i \) 取 \(f_i^j \) 的概率为

\[
\Pr\{f_i = f_i^j\} = p_i^j, \quad j = 1, 2, \ldots, \ell_i, \quad \sum_{j=1}^{\ell_i} p_i^j = 1.
\]

本文用到的主要工具是矩阵的半张量积，矩阵的半张量积在一定的意义下具有交换性（称为伪交换性），是一般矩阵乘积的推广。由于逻辑变量仅取有限个值 \(f_0, f_1 \) 在建立了逻辑变量的向量取值之后，矩阵的半张量积成为研究以布尔网络为代表的逻辑系统的重要工具，并得到了一系列的重要研究成果。文献 [7, 19] 讨论了布尔网络的干扰解耦和输入输出解耦等问题。以布尔网络模型为基础，文献 [31] 针对切换布尔网络进行了研究。文献 [32, 33] 研究了时滞布尔网络的能控、能观、镇定性等问题。文献 [34] 研究了脉冲布尔网络的同步性问题。文献 [24, 35, 36] 研究了布尔网络的 pining 控制。文献 [37] 研究了奇异布尔网络的相关性质。另一方面，利用矩阵半张量积，概率布尔网络也被表示为代数形式，系统的特性包含在状态概率转移矩阵。在状态空间框架下，对概率布尔网络也有一定的研究。文献 [38–40] 研究了概率布尔网络的稳定性与镇定性。文献 [38, 40] 研究了概率布尔网络的同步性等问题。

尽管概率布尔网络、布尔网络为系统生物学和观点演化动力学研究提供了重要理论模型，但是在系统生物学中，描述系统状态转移规律的概率转移矩阵往往是从细胞基因的实验数据得到。对于确定性布尔网络，文献 [41] 研究了如何从实验数据得到布尔网络的结构矩阵，进一步还原布尔网络的逻辑表达形式，解释生物细胞的演化规律。对于概率布尔网络的重构，文献 [42, 43] 给出了从实验数据得到基因状态的稳态概率分布出发，得到概率布尔网络的概率转移矩阵。至于如何得到概率布尔网络的逻辑表达形式，目前还没有相关结果。为此，本文主要研究如何从概率布尔网络的概率转移矩阵得到网络的逻辑表达。

文章结构安排如下：第 2 节简单介绍本文用到的主要工具矩阵半张量积以及逻辑变量的代数形式，并通过实例说明如何利用矩阵的半张量积将概率布尔网络转化为代数形式，即得到概率转移矩阵。第 3 节给出从概率转移矩阵出发得到概率布尔网络逻辑实现的算法，在第 4 节举例解释概率布尔网络重构算法的有效性。第 5 节是总结与未来研究的展望。

为了叙述方便，本文用到的记号列表如下：

- 全体 \(m \times n \) 矩阵的集合记为 \(M_{m \times n} \)。
- 符号 \(M_k(i, j) \) 表示矩阵 \(M_k \) 的第 \((i, j) \) 元素。
李志强等：概率布尔网络重构

- 逻辑变量：真（\(T \sim 1\)），假（\(F \sim 0\)）。记 \(D = \{0,1\}\)。将逻辑取值与二维向量建立对应，\(T \sim (1,0)'\)，\(F \sim (0,1)'\)。
 - 记 \(\Delta_n := \{\delta^1_n, \delta^2_n, \ldots, \delta^n_n\}\)，其中 \(\delta^i_n\) 是单位矩阵 \(I_n\) 的第 \(i\) 列。当 \(n = 2\) 时，有 \(\Delta := \Delta_2\)。
 - 设矩阵 \(M = [\delta^1_n \delta^2_n \ldots \delta^n_n] \in \mathcal{M}_{n \times s}\)，其中 Col(M) \(\subset \Delta_n\)。称矩阵 \(M\) 是逻辑矩阵，写成紧凑形式表示为 \(M = \delta_{[i_1 \ i_2 \ldots \ i_s]}\)。全体 \(n \times s\) 的逻辑矩阵的集合记为 \(L_{n \times s}\)。

2 准备工作

2.1 矩阵半张量积

矩阵的半张量积是逻辑系统状态空间方法的主要工具，简要回顾矩阵的半张量积和逻辑变量的代数表示。

定义 1 ([19]) 设矩阵 \(A \in \mathcal{M}_{m \times n}\)，\(B \in \mathcal{M}_{p \times q}\)，记 \(t = \text{lcm}(n,p)\) 为 \(n\) 和 \(p\) 的最小公倍数。矩阵 \(A\) 和 \(B\) 的半张量积定义如下:

\[
A \times B = (A \otimes I_{t/n})(B \otimes I_{t/p}).
\]

矩阵的半张量积是普通矩阵乘法的自然推广。\(n = p\) 时，矩阵的半张量积就是普通矩阵乘法。普通矩阵乘法具有的性质，半张量积都成立，同时还有一些特有的性质，比如伪交换性 [19]。不致混淆的情况下，本文的矩阵乘法均指半张量积，通常省略 \(\otimes\)。下述命题在逻辑系统的状态空间表示中起了关键作用。

命题 1 ([19]) 设 \(x_1, \ldots, x_n \in \Delta\) 是 \(n\) 个布尔变量，\(f(x_1, \ldots, x_n) \in \Delta\) 是一个布尔函数。存在唯一矩阵 \(M_f \in \mathcal{L}_{2^n \times 2^n}\)，使得

\[
f(x_1, \ldots, x_n) = M_f \Join_{i=1}^n x_i, \quad x_i \in \Delta,
\]

其中 \(M_f\) 称为布尔函数 \(f\) 的结构矩阵。

在逻辑系统的状态空间框架研究中，如下的降幂矩阵 [19] 至关重要:

\[
\Phi_j = \prod_{i=1}^j I_{2i-1} \otimes [I_2 \otimes W_{[2,2i-1]}] M_r, \quad j = 1, 2, \ldots, 2^m,
\]

其中 \(M_r = \delta_4[14]\)。关于降幂矩阵，有如下性质。

引理 1 ([19]) 设 \(z_j = p_1p_2 \ldots p_j\)，其中 \(p_i \in \Delta\)，\(i = 1, 2, \ldots, j\)，那么 \(z_j^2 = \Phi_j z_j\)。

1216

https://engine.scichina.com/doi/10.1360/N112018-00038
2.2 概率布尔网络的代数形式

本小节通过实例简要回顾如何将概率布尔网络转化为代数形式，具体过程可以参看文献[19]。

定义2 概率布尔网络由一组布尔函数和相应的概率分布组成：

\[\{ f^i_j, \Pr(f_i = f^i_j) \mid i = 1, \ldots, n; j = 1, \ldots, \ell \} \]

式（5）表示式（1）中，第 \(i \) 个结点的状态更新律 \(f^i_j \) 以概率 \(\Pr(f_i = f^i_j) \) 被激活。

记

\[
K = \begin{bmatrix}
1 & 1 & \cdots & 1 & 1 \\
1 & 1 & \cdots & 1 & 2 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 1 & \cdots & 1 & \ell_n \\
1 & 1 & \cdots & 2 & 1 \\
1 & 1 & \cdots & 2 & 2 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 1 & \cdots & 2 & \ell_n \\
\ell_1 & \ell_2 & \cdots & \ell_{n-1} & \ell_n
\end{bmatrix}, \tag{6}
\]

易知 \(K \in \mathcal{M}_{N \times n}, N = \prod_{j=1}^{\ell} \ell_j \). 矩阵 \(K \) 的第 \(i \) 行表示一个布尔网络被激活的概率为

\[
P_i = \Pr\{ \text{网络被激活} \} = \prod_{j=1}^{\ell} p_{ij}^{K_{ij}}. \tag{7}
\]

定义 \(x(t) := x_1(t)x_2(t) \cdots x_n(t) \). 所有可能被激活的布尔网络被转化为如下的代数形式:

\[
x(t+1) = L_i x(t), \quad i = 1,2,\ldots,N. \tag{8}
\]

状态 \(x(t+1) \) 的数学期望:

\[
E x(t+1) = \sum_{i=1}^{N} P_i L_i x(t) := L x(t), \tag{9}
\]

易知 \(L \) 是一个概率逻辑矩阵。以下通过实例说明如何将概率布尔网络转化为其代数形式。理论陈述可参看文献[19]。

例1 考虑如下概率布尔网络:

\[
\begin{align*}
x_1(t+1) &= f_1(u(t), x_1(t), x_2(t)), \\
x_2(t+1) &= f_2(u(t), x_1(t), x_2(t)),
\end{align*} \tag{10}
\]
其中，
\[f_1(u(t), x_1(t), x_2(t)) \in \{ f_1^1 = u(t) \land x_2(t), f_1^2 = u(t) \lor x_2(t) \} , \]
\[f_2(u(t), x_1(t), x_2(t)) \in \{ f_2^1 = u(t) \leftrightarrow x_1(t), f_2^2 = x_1(t) \rightarrow x_2(t), f_2^3 = x_2(t) \rightarrow u(t) \}. \]
相应的激活概率分别为
\[
\begin{align*}
\text{Pr}(f_1 = f_1^1) &= 0.4, & \text{Pr}(f_1 = f_1^2) &= 0.6, \\
\text{Pr}(f_2 = f_2^1) &= 0.3, & \text{Pr}(f_2 = f_2^2) &= 0.1, & \text{Pr}(f_2 = f_2^3) &= 0.6.
\end{align*}
\]
构造矩阵 \(K \) 以及相应的概率:
\[
K = \begin{bmatrix}
1 & 1 & P_1 = 0.4 \times 0.3 = 0.12, \\
1 & 2 & P_2 = 0.4 \times 0.1 = 0.04, \\
1 & 3 & P_3 = 0.4 \times 0.6 = 0.24, \\
2 & 1 & P_4 = 0.6 \times 0.3 = 0.18, \\
2 & 2 & P_5 = 0.6 \times 0.1 = 0.06, \\
2 & 3 & P_6 = 0.6 \times 0.6 = 0.36.
\end{bmatrix}
\]
设 \(x(t) = x_1(t) \land x_2(t) \in \Delta_4, u(t) \in \Delta \)，概率布尔控制网络 (10) 的代数形式计算如下:
\[
x(t + 1) = Lx(t)u(t),
\]
其中 \(L \in \{L_1, L_2, L_3, L_4, L_5, L_6\} \),
\[
\begin{align*}
L_1 &= \delta_4[1 \ 4 \ 3 \ 4 \ 2 \ 3 \ 4 \ 3], & P_1 &= 0.12; \\
L_2 &= \delta_4[1 \ 3 \ 4 \ 4 \ 1 \ 3 \ 3 \ 3], & P_2 &= 0.04; \\
L_3 &= \delta_4[1 \ 4 \ 3 \ 3 \ 1 \ 4 \ 3 \ 3], & P_3 &= 0.24; \\
L_4 &= \delta_4[1 \ 2 \ 1 \ 4 \ 2 \ 1 \ 2 \ 3], & P_4 &= 0.18; \\
L_5 &= \delta_4[1 \ 1 \ 2 \ 4 \ 1 \ 1 \ 1 \ 3], & P_5 &= 0.06; \\
L_6 &= \delta_4[1 \ 2 \ 1 \ 3 \ 1 \ 2 \ 1 \ 3], & P_6 &= 0.36.
\end{align*}
\]
在 \(t + 1 \) 时刻，网络状态 \(x(t) \) 的数学期望为
\[
\mathbb{E}x(t + 1) = \sum_{i=1}^{6} L_i \text{Pr}(L = L_i)x(t)u(t) = L_{\text{expect}}x(t)u(t),
\]
其中 \(L_{\text{expect}} = \sum_{i=1}^{6} L_i \text{Pr}(L = L_i) \),
\[
L_{\text{expect}} = \begin{bmatrix}
1 & 0.06 & 0.54 & 0 & 0.7 & 0.24 & 0.42 & 0 \\
0 & 0.54 & 0.06 & 0 & 0.3 & 0.36 & 0.18 & 0 \\
0 & 0.04 & 0.36 & 0.6 & 0 & 0.16 & 0.28 & 1 \\
0 & 0.36 & 0.04 & 0.4 & 0 & 0.24 & 0.12 & 0
\end{bmatrix}.
\]
3 概率布尔网络的重构

由 2.2 小节可知，任意一个概率布尔网络都可以转化为其离散形式，得到其概率逻辑矩阵。这样就可以利用代数工具研究概率逻辑网络的性质。本节讨论如何将概率布尔网络的结构矩阵 L 转化为网络的逻辑表达形式，即得到一组概率函数 f_i 以及相应的概率 $Pr(f_i = f_i^j)$, $i = 1, 2, \ldots, n$, $j = 1, 2, \ldots, \ell$, 使得概率布尔网络的结构矩阵是概率逻辑矩阵 L。如果概率布尔网络

\[
\sum_i \{ f_i^j, Pr(f_i = f_i^j) \mid i = 1, \ldots, n; j = 1, \ldots, \ell \}
\]

的结构矩阵是 L，则称概率布尔网络 Σ 是概率逻辑矩阵 L 的一个实现。如果概率布尔网络 Σ_1 和 Σ_2 具有相同的概率逻辑矩阵 L，则称概率布尔网络 Σ_1 和 Σ_2 是等价的。

接下来给出从概率逻辑矩阵 L 构造概率布尔网络的算法（算法 1）。

算法 1 概率布尔网络的重构

Step 1 基于概率逻辑矩阵 L, 计算第 i 个结点的概率逻辑矩阵 M_i, $i = 1, 2, \ldots, n$；

Step 2 从 M_i 构造 M_i^f, $j = 1, 2, \ldots, \ell$, 和相应的概率 p_i^f, $j = 1, 2, \ldots, \ell$, 使得 $M_i = \sum_{j=1}^\ell p_i^f M_i^f$；

Step 3 从 M_i^f 构造 $f_i^j, j = 1, 2, \ldots, \ell$。

注释1 确定性布尔网络的重构在文献 [19] 中进行了阐述，本文针对概率布尔网络的重构进行了讨论。确定性布尔网络重构是概率布尔网络的特殊形式。重构过程主要分为两步：第 1 步是将概率逻辑矩阵分解为若干个确定布尔网络以及相应的概率；第 2 步是利用文献 [19] 中的方法，将确定布尔网络重构为逻辑表达形式。本文的主要工作是研究网络的概率结构矩阵分解为若干个确定性逻辑矩阵。

在算法 1 的 Step 3 中，$M_i^f \in L_{2n \times 2n}$ 是一个布尔矩阵。在文献 [19] 中，已经建立了逻辑函数和 2×2^n 的布尔矩阵一一对应，并给出了如何从布尔矩阵构造布尔函数的方法，本文将在第 4 节通过实例说明，具体理论介绍不再赘述，可以参看文献 [19]。

接下来，主要介绍如何从概率逻辑矩阵 L 得到每一个结点的概率逻辑矩阵 M_i, 以及从 M_i 构造 M_i^f 及其对应的概率 $Pr(f_i = f_i^j)$. 定义一组 2×2^n 的矩阵 S_i^n, $i = 1, 2, \ldots, n$。

\[
S_1^n = [\delta_1^n, \delta_2^n, \delta_3^n, \ldots, \delta_{2n}^n],
\]

\[
S_2^n = [\delta_1^n, \delta_1^n, \delta_2^n, \ldots, \delta_2^n, \delta_3^n, \ldots, \delta_{2n}^n],
\]

\[\vdots\]

\[
S_n^n = [\delta_1^n, \delta_2^n, \delta_3^n, \ldots, \delta_1^n, \delta_2^n, \ldots, \delta_{2n}^n].
\]

命题 (19) S_i^n 有如下性质：

(1) $S_k^n = S_i^n W_{[2^{n-1}, 2]}$, $k = 1, 2, \ldots, n$；

(2) 设 $x = \otimes_{i=1}^n x_i \in A_{2^n}$, $x_i \in A$, $i = 1, \ldots, n$, 那么 $x_i = S_i^n x, i = 1, 2, \ldots, n$。

https://engine.scichina.com/doi/10.1360/N112018-00038
矩阵 $W_{2^n-1,2}$ 是指换位矩阵，一般的换位矩阵构造参看文献 [7]。文献 [19] 中给出了命题 2 的证明。为了从概率逻辑矩阵 L 得到第 i 个结点的概率逻辑矩阵 M_i, 令 $M_i = S^n_i L$, $i = 1, 2, \ldots, n$, 首先给出如下关于概率逻辑矩阵的命题。

命题 3
设第 i 个结点的概率逻辑矩阵 M_i, 则 $M_i = S^n_i L$, $i = 1, 2, \ldots, n$。

证明
概率布尔网络的代数结构形式为

$$x(t+1) = Lx(t),$$

在式 (16) 的两边都左乘 S^n_i, 得到

$$S^n_i x(t+1) = S^n_i Lx(t),$$

由命题 2, 得到

$$S^n_i x(t+1) = x_i(t+1).$$

另一方面第 i 个结点的状态方程代数形式为

$$x_i(x+1) = M_ix(t), \quad i = 1, 2, \ldots, n.$$

结合式 (17)～(19), 可以得到

$$M_i = S^n_i L, \quad i = 1, 2, \ldots, n.$$

接下来讨论对每个 $L \in A_{2^n \times 2^n}$, 构造 $L_i \in L_{2^n \times 2^n}$, $i = 1, 2, \ldots, i$ 以及相应的 p_i, $i = 1, 2, \ldots, i$, 使得 $L = \sum_{i=1}^{n} p_i L_i$. 不失一般性, 设

$$L = \begin{bmatrix} m_1 & m_2 & \cdots & m_{2^n} \\ 1 - m_1 & 1 - m_2 & \cdots & 1 - m_{2^n} \end{bmatrix}.$$

算法 2 给出了如何将逻辑矩阵 $L \in A_{2^n \times 2^n}$ 分解为若干个逻辑矩阵 $L_i \in L_{2^n \times 2^n}$ 以及相对应的概率 p_i, 使得 $L = \sum_{i=1}^{n} p_i L_i$.

算法 2: 概率逻辑矩阵 L 的分解算法

设 $R_0 = L$, $k = 0$;

Do while $R_k \neq 0$;

$\quad k = k + 1$;

Step 1 记 R_k 的第 1 行中最小的非零元为 p_k;

Step 2 构造矩阵 L_k,

$$L_k(1, j) = \begin{cases} 1, & j \in \{j | m_j \neq 0\} \\
0, & j \in \{j | m_j = 0\} \end{cases},$$

$$L_k(2, j) = 1 - L_k(1, j);$$

Step 3 记 $R_{k+1} = R_k - p_k L_k$;

End while
例 2 考虑概率逻辑矩阵

\[
L = \begin{bmatrix}
0.4 & 1 & 1 & 0.2 & 1 & 0 & 0 & 1
\end{bmatrix},
\]

注意到矩阵 \(L \) 的第 1 行最小的非零元为 0.2. 首先取 \(p_1 = 0.2 \), 构造矩阵

\[
L_1 = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 1
\end{bmatrix} = \delta_2[1 1 1 1 1 2 2 1],
\]

此时，

\[
R_1 = L - 0.2L_1 = \begin{bmatrix}
0.2 & 0.8 & 0 & 0.8 & 0 & 0 & 0 & 0.8
\end{bmatrix}.
\]

取 \(p_2 = 0.2 \), 构造矩阵

\[
L_2 = \begin{bmatrix}
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{bmatrix} = \delta_2[1 1 1 2 1 2 2 1],
\]

此时，

\[
R_2 = R_1 - 0.2L_2 = \begin{bmatrix}
0 & 0.6 & 0.6 & 0 & 0.6 & 0 & 0 & 0.6
\end{bmatrix}.
\]

取 \(p_3 = 0.6 \), 构造矩阵

\[
L_3 = \begin{bmatrix}
0 & 1 & 1 & 0 & 1 & 0 & 0 & 1
\end{bmatrix} = \delta_2[2 1 1 2 1 2 2 1],
\]

得到，

\[
R_3 = R_2 - 0.6L_3 = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}.
\]

因此，矩阵 \(L \) 可以分解为

\[
L_1 = \delta_2[1 1 1 1 1 2 2 1], \quad p_1 = 0.2;
L_2 = \delta_2[1 1 1 2 1 2 2 1], \quad p_2 = 0.2;
L_3 = \delta_2[2 1 1 2 1 2 2 1], \quad p_3 = 0.6,
\]

使得 \(L = p_1L_1 + p_2L_2 + p_3L_3 \).

注释 2 事实上，例 2 中概率逻辑矩阵 \(L \) 的分解方式不是唯一的. 矩阵 \(L \) 还可以分解为

\[
N_1 = \delta_2[2 1 1 2 1 2 2 1], \quad p_1' = 0.4;
N_2 = \delta_2[1 1 1 2 1 2 2 1], \quad p_2' = 0.4;
N_3 = \delta_2[2 1 1 1 1 2 2 1], \quad p_3' = 0.2,
\]

容易检验有 \(L = p_1'N_1 + p_2'N_2 + p_3'N_3 \).

下面的改进算法 (算法 3) 可以得到概率布尔网络的其他实现.
设 $R_0 = L, k = 0$;
Do while $R_k \neq 0$:
 $k = k + 1$;
Step 1 记 R_k 中最小的非零元为 p_k;
Step 2 构造矩阵 L_k. 考虑 $j = 1, 2, \ldots, 2^n$. 记 L_k 的第 j 列列为 $[R_k^{(1,j)}, R_k^{(2,j)}]$.
 当 $R_k^{(1,j)}R_k^{(2,j)} \neq 0$, 则 L_k 的第 j 列可取为 δ_2^1 或 δ_2^2;
 当 $R_k^{(1,j)} = 0$, 则 L_k 的第 j 列可取为 δ_2^2;
 当 $R_k^{(2,j)} = 0$, 则 L_k 的第 j 列可取为 δ_2^1;
Step 3 记 $R_{k+1} = R_k - p_k L_k$;
End while

4 实例

在基因调控网络中，往往有实验数据可以得到各个状态的状态转移矩阵，即概率布尔网络的代数形式。本节通过实例将概率逻辑矩阵还原为概率布尔网络。

例3 考虑概率布尔网络

$$
\begin{align*}
 x_1(t+1) &= f_1(x_1(t), x_2(t), x_3(t)), \\
 x_2(t+1) &= f_2(x_1(t), x_2(t), x_3(t)), \\
 x_3(t+1) &= f_3(x_1(t), x_2(t), x_3(t)).
\end{align*}
$$

(23)

已知概率布尔网络 (23) 的代数结构形式为

$$
 x(t+1) = L x(t),
$$

其中结构矩阵为 L:

$$
 L = \begin{pmatrix}
 1 & 0 & 0.15 & 0 & 0.24 & 0 & 0 & 0.3 \\
 0 & 0 & 0 & 0 & 0 & 0.5 & 0 & 0 \\
 0 & 0 & 0.15 & 0 & 0.06 & 0 & 1 & 0.7 \\
 0 & 0 & 0 & 0 & 0 & 0.5 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0.5 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0.7 & 0.35 & 0.8 \\
 0 & 0 & 0 & 0 & 0 & 0.56 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
 \end{pmatrix}.
$$

首先构造

$$
 S_1^3 = \delta_2 [1 1 1 1 2 2 2 2], \\
 S_2^3 = \delta_2 [1 1 2 2 1 1 2 2], \\
 S_3^3 = \delta_2 [1 2 1 2 1 2 1 2].
$$
由命题 3, 得到各个结点的结构矩阵 $M_i \in A_{2 \times 8}, \ i = 1, 2, 3$, 使得

$$
\begin{align*}
 x_1(t+1) &= M_1 x(t), \\
 x_2(t+1) &= M_2 x(t), \\
 x_3(t+1) &= M_3 x(t),
\end{align*}
$$

(24)

其中

$$
\begin{align*}
 M_1 &= S_1^2 L = \begin{bmatrix} 1 & 0 & 0.3 & 0 & 0.3 & 1 & 1 & 1 \\ 0 & 1 & 0.7 & 1 & 0.7 & 0 & 0 & 0 \end{bmatrix}, \\
 M_2 &= S_2^2 L = \begin{bmatrix} 1 & 0.7 & 0.5 & 0.8 & 0.8 & 0.5 & 0 & 0.3 \\ 0 & 0.3 & 0.5 & 0.2 & 0.2 & 0.5 & 1 & 0.7 \end{bmatrix}, \\
 M_3 &= S_3^2 L = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}.
\end{align*}
$$

根据算法 2, 对第 1 个结点, M_1 的第 1 行有非 0 非 1 的元素 0.3, 因此 M_1 可以分解为

$$
M_1 = \sum_{i=1}^{2} \Pr(f_1 = f_i^1) M_i^1.
$$

其中 $\Pr(f_1 = f_1^1) = 0.3, \Pr(f_1 = f_2^1) = 1 - 0.3 = 0.7$, 同时,

$$
\begin{align*}
 M_1^1 &= \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}, &
 M_2^1 &= \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}.
\end{align*}
$$

在文献 [19] 中，给出了详细地将布尔函数由代数形式转化为逻辑表达式的方法, 可以得到

$$
\begin{align*}
 f_1^1 &= x_1 \rightarrow x_3, \ &\Pr(f_1 = f_1^1) = 0.3; \\
 f_2^1 &= x_1 \leftrightarrow (x_2 \land x_3), \ &\Pr(f_1 = f_2^1) = 0.7.
\end{align*}
$$

(25)

对第 2 个结点的逻辑函数和相应的激活概率类似, 计算结果如下:

$$
\begin{align*}
 f_1^2 &= x_1 \land x_2, \ &\Pr(f_2 = f_1^2) = 0.2; \\
 f_2^2 &= x_2 \leftrightarrow x_3, \ &\Pr(f_2 = f_2^2) = 0.3; \\
 f_3^2 &= x_1 \lor x_2, \ &\Pr(f_2 = f_3^2) = 0.5.
\end{align*}
$$

(26)

第 3 个结点的逻辑函数只有一个, 即 $f_3 = x(1) \lor (x_2 \rightarrow x_3)$, 其概率为 1.

5 结论

本文主要给出了由概率转移矩阵得到概率布尔网络的逻辑表达实现, 即给定一个概率转移矩阵 $L \in A_{2^n \times 2^n + m}$, 如何寻找一个概率布尔网络的逻辑实现:

$$
 f_i \in \{f_1^i, f_2^i, \ldots, f_m^i\}, \quad i = 1, 2, \ldots, n,
$$

(27)
并且 f_i 取 f_j^i 的概率为

$$
Pr\{f_i = f_j^i\} = p_j^i, \quad j = 1, 2, \ldots, \ell_i.
$$

(28)

本文算法中得到的概率布尔网络的逻辑实现不是唯一的。比如对于第 i 个结点，由算法 3 第 2 步，

$$
M_i \in \Lambda_{2^{2n}}, \text{ 需要确定 } p_j^i = Pr(f_i = f_j^i) \text{ 以及 } M_j^i, \text{ 使得 }
$$

$$
M_i = \sum_{j=1}^{\ell_i} p_j^i M_j^i.
$$

(29)

注意到 $M_j^i \in \mathcal{L}_{2^{2n}}$，其所有的可能形式有 2^{2n} 种，即 $\ell_i \leq 2^{2n}$。在式 (29) 中，考虑到等式两端矩阵相等，因此得到的方程个数为 2^{2n}。从线性代数角度可知，p_j^i 的解不唯一。如何根据实际应用需求选取性能指标，得到最优的概率布尔网络逻辑实现是亟待研究的问题。

致谢 感谢编委和审稿人对本文的初稿提出宝贵的修改意见和建议。

参考文献

10 Zhao Q C. A remark on “scalar equations for synchronous Boolean networks with biological applications”. IEEE Trans Neural Netw, 2005, 16: 1715–1716

https://engine.scichina.com/doi/10.1360/N112018-00038
31 Li S J, Nicolau F, Respondek W. Multi-input control-affine systems static feedback equivalent to a triangular form and their flatness. Int J Control, 2016, 89: 1–24
Reconstruction of probabilistic Boolean networks

Zhiqiang LI1,2, Jinli SONG1,2* & Jian YANG3

1. School of Mathematics and Information Science, Henan University of Economics and Law, Zhengzhou 450046, China;
2. Center of Henan Provincial Education Data Statistics and Analysis, Zhengzhou 450046, China;
3. Public Basic Teaching Department, Henan Vocational and Technical College of Communications, Zhengzhou 450000, China

* Corresponding author. E-mail: songjinli1107@163.com

Abstract Probabilistic Boolean control networks (PBCNs) have received a great amount of attention in the field of opinion dynamics in social networks and gene (or genetic) regulatory networks. PBCNs have been transferred to state transition probability matrices. Using a Markov chain theory, the PBCN is investigated under a state space framework. In this paper, we address the problem of constructing a probabilistic Boolean control network from a prescribed transition probability matrix. First, an algorithm is given to obtain the realization of a PBCN. Second, because of the non-uniqueness of the logical realization of a PBCN, a modified algorithm is introduced to obtain other realizations of PBCNs. Finally, an illustrative example is given to demonstrate both the efficiency and effectiveness of the proposed algorithms. In addition, the future direction of the research is discussed.

Keywords probabilistic Boolean control network, semi-tensor product of matrices, logical realization, transition probability matrix, reconstruction

Zhiqiang LI was born in 1980. He received the Ph.D. degree in systems theory from the Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, in 2010. Currently, he is an associate professor in the School of Mathematics and Information Science, Henan University of Economics and Law, Zhengzhou. His research interests include logical dynamical systems, nonlinear systems, and game theory.

Jinli SONG was born in 1981. She received the M.S. degree in applied mathematics from the Department of Mathematics, Zhengzhou University, Zhengzhou, in 2007. Currently, she is an associate professor in the School of Mathematics and Information Science, Henan University of Economics and Law, Zhengzhou. Her research interests include logical dynamical systems and semi-tensor products.

Jian YANG was born in 1981. He received the M.S. degree in applied mathematics from the Department of Mathematics, Henan University, Kaifeng, in 2007. Currently, he is an associate professor in the Public Basic Teaching Department, Henan Vocational and Technical College of Communications. His research interests include graph theory and operations research.