同步辐射XAFS 技术在能源催化原位测量研究中的应用

<table>
<thead>
<tr>
<th>期刊</th>
<th>中国科学:化学</th>
</tr>
</thead>
<tbody>
<tr>
<td>稿件ID</td>
<td>SSC-2023-0153.R1</td>
</tr>
<tr>
<td>稿件栏目</td>
<td>专题论述</td>
</tr>
<tr>
<td>作者提交日期</td>
<td>2023-08-18</td>
</tr>
<tr>
<td>参与作者列表</td>
<td>徐刘鑫, 周婉琳, 杨晨宇, 苏徽, 刘庆华, 孙治湖, 韦世强</td>
</tr>
<tr>
<td>关键词</td>
<td>同步辐射, XAFS, 原位测量, 能源催化, 局域结构演变</td>
</tr>
<tr>
<td>英文关键词</td>
<td></td>
</tr>
<tr>
<td>学科领域</td>
<td>分析化学</td>
</tr>
</tbody>
</table>
同步辐射 XAFS 技术在能源催化原位测量研究中的应用

徐刘鑫 a, 周婉琳 a, 杨晨宇, 苏徽, 刘庆华, 孙治湖*, 韦世强*

中国科学技术大学国家同步辐射实验室，安徽省合肥市合作化南路 42 号, 230029

摘要: 本文简要介绍了基于大科学装置的同步辐射 X 射线吸收精细结构谱学（XAFS）的基本原理、数据分析和实验方法, 以及在能源催化原位测量研究中的应用。通过选择近年来该领域的一些代表性研究论文, 概述了原位 XAFS 技术研究气-固相和液-固相化学反应测量的实验装置，并应用于研究能源催化材料的结构动态演化过程和机理，展示了 XAFS 技术对原位测量化学反应条件下活性结构演变的强大表征能力，展望了 XAFS 技术在原位化学测量研究中的机遇和挑战。

关键词: 同步辐射、XAFS、原位测量、能源催化、局域结构演变

中图分类号: O722+.8

a 共同第一作者

*通讯联系人: 孙治湖, 博士, 研究员, 博士生导师
E-mail: zhsun@ustc.edu.cn

*通讯联系人: 韦世强, 博士, 教授, 博士生导师
E-mail: sqwei@ustc.edu.cn，电话:0551-63601997，传真:0551-65141078
内容

1. 概述.. 3

2. XAFS 基本原理.. 3

3. XAFS 实验方法.. 7
 3.1. 实验方法.. 7
 3.1.1. 透射模式... 8
 3.1.2. 荧光模式... 9

4. 原位 XAFS 测量的实验装置.. 10
 4.1. 气-固相反应原位实验装置... 11
 4.1.1. 高温常压下的气-固相反应原位实验装置... 11
 4.1.2. 高温高压下的气-固相反应原位实验装置... 12
 4.2. 固-液相反应原位实验装置... 14
 4.2.1. 半反应测试的固-液相原位池... 14
 4.2.2. 工况条件下的固-液相反应原位池... 16

5. XAFS 技术在能源催化材料的原位化学测量研究中的应用.. 17
 5.1 原位 XAFS 技术在气-固相反应研究中的应用... 19
 5.1.1. 一氧化碳氧化反应研究... 19
 5.1.2. 二氧化碳加氢还原反应研究.. 21
 5.1.3. 丙烷直接脱氢反应研究... 23
 5.1.4. 苯甲醇氧化反应研究.. 25
 5.2 原位 XAFS 实验方法在固-液相反应中的应用... 26
 5.2.1. 电催化水解反应研究... 26
 5.2.2. 电催化二氧化碳还原反应研究... 33
 5.2.3. 电催化氧还原反应研究... 31

6. 总结与展望.. 36
1. 概述

现代社会的飞速发展加剧了传统化石能源的消耗，导致日趋严重的能源危机和环境问题。合理利用现有化石能源、开发新型可再生的清洁能源以及降低温室气体的排放已成为社会可持续发展的战略需求。催化是应对这些挑战的关键科学技术之一。开发高效、稳定的催化剂以提高能源利用效率，具有举足轻重的作用。在催化反应过程中，催化剂的组成、表面结构、活性位点等随着所处的环境和温度不同而发生动态变化，深入理解它们在复杂工况环境下的动态演变过程是进一步设计和优化其服役性能的基础和前提。为此，就需要在催化反应的真实条件下，利用各种原位实验技术研究催化剂的局域电子和空间结构、催化剂与反应物之间、催化剂与载体之间的化学键断裂和形成过程，监测在不同反应阶段催化剂的几何结构与电子特征，探明催化结构和性能之间的关系，为开发高效稳定的催化剂指明方向。

基于同步辐射大科学装置上发展起来的 X 射线吸收精细结构谱学（X-ray Absorption Fine Structure, XAFS）技术由于其对原子局域结构的敏感性和光入-光出的探测模式，不苛求真空条件，容易实现原位探测等优势，已经成为了一种对物质动态结构进行实时在线测量的有力手段，能够提供催化剂在工作和服役环境下的成分、配位环境、价态等微观信息，在催化研究中已经发挥和将继续发挥非常重要的作用[1-6]。

XAFS 是物质对 X 射线的吸收系数μ(E)在其中特定原子吸收边的高能侧出现的随能量变化的振荡结构，它反映了吸收原子周围近邻原子排布的结构信息，具有对吸收原子周围原子的电子和化学环境敏感的特征。XAFS 是一种局域结构探测技术，可以研究固态、液态和气体等几乎所有凝聚态物质的结构[7, 8]。XAFS 得到的是吸收系数—光子能量的谱图，因此在采谱过程中，吸收光谱的入射光子能量要求在较大能量范围内连续可调，同时要求同步辐射光能在大的能量范围内能保持高的强度。二十世纪七十年代以来开始建成和使用的同步辐射装置，提供了一个强度高、波长连续、准直性好、有偏振性、有时间结构的性能优异的光源，成为近代科学仪器史上的重要里程碑，同时也带动了 XAFS 技术的蓬勃发展。目前，世界各地同步辐射装置上几乎都建立了专用于 XAFS 研究的实验站，有的光源上甚至建有多条乃至十多条专用或兼用 XAFS 线站，用于研究在各种常规、高温高压和极低浓度、原位反应、工作过程监测等条件下的科学问题，为 XAFS 技术在物理、化学、材料、生物、环境等众多领域和学科的结构研究提供了良好的实验平台[9-13]，反过来这些领域的发展又对 XAFS 技术提出了更高的要求，从而极大地促进了 XAFS 的发展。

2. XAFS 基本原理

1920 年 Friche 和 Hertz 首次从实验上发现扩展 XAFS（EXAFS）现象[14, 15]。1931 年和 1932 年，Kronig 先后用长程有序（LRO）理论[16]和短程有序（SRO）
理论[17, 18]来分别解释凝聚态物质和气体分子产生的 EXAFS。关于 LRO 和 SRO 理论的争论一直持续了 40 年，直到 1971 年 Sayers、Stern 和 Lytle 基于单电子的单次散射理论推出了一个可接受的理论表达式，将此公式进行傅里叶变换，得出傅里叶变换振幅曲线的峰位对应于配位近邻原子的位置，峰的强度对应于近邻原子的种类和数量，并得到了实验验证的正确性，改变了 EXAFS 理论的混乱局面，开创了用 EXAFS 来测定物质结构的新纪元[19]。当成功地把不同原子配位壳层的信号分离开来，人们才明确 EXAFS 是因吸收了 X 光的原子与近邻配位原子的相互作用产生的。至此，SRO 理论作为一种更普遍的 XAFS 理论才为人们广泛接受。XAFS 理论的另一个关键进展是对多重散射（Multiple-scattering，MS）的准确描述。1975 年 Lee 和 Pendry 利用 EXAFS 数据分析中的傅里叶变换，首次提出基于有效路径长度的多重散射 EXAFS 的理论描述[20]。后来 Rehr 和 Albers 发展了基于格林传播函数的可分离表示[21]，获得了 XAFS 路径展开理论的巨大成功，解决了很多计算上的困难。迄今为止，各种各样的 EXAFS 数据处理软件和 XAFS 理论模型都已经发展出来，如全路径多重散射（full multiple-scattering, FMS）[22]，自洽场和完全相对论计算[23]等。

经过四十年来的发展，EXAFS 技术的理论、实验和数据分析都已趋于成熟，图 1 显示了 XAFS 技术大致的发展趋势。XAFS 现象只决定于短程序相互作用，不需要样品具有长程有序结构，并且元素的 X 射线吸收具有元素特征，通过调节 X 射线的能量，可对凝聚态物质的复杂体系中各种元素的原子周围环境分别进行研究，给出吸收原子的种类、距离、配位数和无序度因子等结构信息，已经成为局域结构分析的一种强有力的手段[7]。

图 1. XAFS 技术的发展趋势。

描述 XAFS 测量的基本物理量是吸收系数μ(E)，表示经过介质以后光强度的衰减程度，它也服从 Beer-Lambert 定律。图 2 给出了一定厚度的 Cu 箔吸收系数 μ(E) 随入射 X 射线能量变化的曲线，这是一条典型的 XAFS 谱，它包括 X 射线吸收近边结构（X-ray Absorption Near Edge Structure，XANES）和扩展 X 射线吸
收精细结构（Extended X-ray Absorption Fine Structure，EXAFS）。其中，XANES指吸收边附近-30–50 eV 以内的区域，EXAFS 指从吸收边高能侧 30–50 eV 到近 1000 eV 的范围内元素的 X 射线吸收系数的振荡。其中，XANES 是由低能光电子经多重散射后再回到吸收原子与出射波发生干涉而成，而 EXAFS 主要是光电子被配位原子作单散射回到吸收原子与出射波干涉形成的。虽然在物理本质上 EXAFS 与 XANES 没有区别，但是在具体的分析方法和理论阐述的复杂程度上还是有所不同。

图 2. Cu 箔的 K 边 XAFS 谱。

XAFS 现象也是基于光电效应，X 射线入射到物质上时被物质所吸收，当入射的 X 射线能量大于某种原子 A 的内壳层电子的束缚能时，足以把这一内层电子激发而形成向外射出的光电子波。这一特定能量称之为吸收边，如 1s、2s、2p₁/₂ 和 2p₃/₂ 电子被激发时对应于 K、L₁、L₂ 和 L₃ 吸收边。激发出的电子波在向外传播过程中，受到邻近原子的作用而被散射，散射波与出射波的相互干涉改变了 A 原子的电子态波函数，导致在高能侧 A 原子对 X 射线的吸收出现振荡现象，这就是 XAFS 的产生原理，如图 3 所示。

图 3. 出射光电子波被周围原子散射而形成吸收边高能侧振荡信号的示意图。

如果假设出射的光电子波只被近邻原子散射一次（即单散射近似），EXAFS
振荡函数$\chi(k)$可表示为[24]:

$$
\chi(k) = \sum_j \frac{N_j S_j^2}{k} \int_0^\infty \frac{g(R)}{R^2} e^{-2r_j/\lambda(k)} \sin[(2kR_j + \delta(k) + 2\phi_c(k))dR] \tag{1}
$$

此即通用 EXAFS 公式。其中，k 为光电子波矢，它与入射 X 射线能量的关系为 $k = [2m(E-E_0)/\hbar^2]^{1/2}$，$E_0$ 为吸收边能量。对于随机取向的多晶及溶液样品，由于其键角的各向同性平均效应，与吸收原子距离相近的同种原子难以分辨，这些原子统称为“配位壳层”，N_j 表示第 j 配位壳层的原子数。S_j^2 为振幅衰减因子，R 为吸收原子与散射原子之间的距离，$g(R)$ 为散射原子的对分布函数，$\lambda(k)$ 为散射的光电子的平均自由程，$f(k)$ 和 $\delta(k)$ 分别为散射原子的背散射振幅和散射相移函数，$\phi_c(k)$ 为吸收原子的相移函数。

对于低无序体系弱晶态材料，$g(R)$ 可以利用高斯分布表示为[24]:

$$
g(R) = (2\pi\sigma^2)^{-1/2} \exp\left[-\frac{(R-R_0)^2}{2\sigma^2}\right], \tag{2}
$$

这时式（1）可简化为:

$$
\chi(k) = \sum_j \frac{N_j S_j^2}{k R_j^2} e^{-2\sigma^2/\lambda(k)} e^{-2kR_j} \sin(2kR_j + \delta(k) + 2\phi_c(k)) \tag{3}
$$

此式为标准 EXAFS 公式，其中 σ^2（Debye-Waller 因子）是散射原子距离 R 的均方差，而 $e^{-2\sigma^2}$ 项表示热振动和结构无序对 EXAFS 振荡的影响。

对于无序度更高的体系（一般无序度 $\sigma^2 > 0.01$ Å²），如非晶材料和高温熔体、液体，原子间的对分布函数不再是简谐的，$g(R)$ 函数将不能再由高斯分布模型来描述，这时将利用累积量展开法[25, 26]，或引入一个指数分布函数来表示结构无序，通过它与高斯原子分布函数的卷积来表示非谐性的原子间分布函数[27, 28]。

必须指出的是，建立在单散射近似基础上的通用 EXAFS 公式（1）是假设光电子的终态只受到近邻原子的单散射过程的影响。显然，若光电子波在返回到吸收原子前被两个或多个近邻原子多次散射，这样单散射近似将不能适用，而必须考虑多重散射（multiple-scattering）的影响。对于直线排列的路径（即 3 个原子呈直线或近似直线排列），其多重散射的贡献甚至会比高壳层单散射的贡献还大。最早对多重散射 EXAFS 作出理论论述的是 Lee 和 Pendry，他们把多重散射的贡献按其有效路径长度进行分类[29]，这对分析原子间距及其他结构参数非常有利。Rehr 和 Albers 发展了基于格林函数传播子可分离表示的路径展开方法[21, 30]，克服了以往的多重散射理论计算方面的主要困难。在散射原子位置分别为 $R_1, R_2, \ldots, R_N = R_0$ 的一条 N 节点路径中，XAFS 信号 χ 可以表示为类似式（1）的表达式:
\[\chi_r(k) = \text{Im} \left[\frac{f_{\text{eff}}(k)}{kR_{\text{eff}}^2} e^{i(2kR_{\text{eff}} + \delta(k))} e^{-2k^2\sigma^2} \right], \quad (4) \]

其中的振幅项为此路径的有效散射振幅 \(f_{\text{eff}} \)。FEFF 是根据这种算法实现从头计算 EXAFS 的程序，该程序名于理论中的有效散射振幅 \(f_{\text{eff}} \)，是一个精确的、高阶的 XAFS 多重散射计算通用程序。单散射和多重散射路径的有效振幅函数 \(f_{\text{eff}} \)、相移函数 \(\delta(k) \) 及电子平均自由程 \(\lambda(k) \) 都能用 FEFF 计算出来。

3. XAFS 实验方法

3.1. 实验方法

一般来说，XAFS 中有用的信息 \(\Delta \mu \)（吸收系数的振荡部分）只占总吸收强度的百分之几左右，这就需求对实验的测量必须有很高的精度。实验的关键在于采用能量可调的高亮度 X 射线光源和选用高性能的探测器采集 XAFS 数据。目前，光源通常为高通量的同步辐射装置，并通过双晶单色器获得高能量分辨的单色光。为了满足不同的研究需要，已发展了多种 XAFS 测量方法，其中最常用的就是透射法和荧光法，如图 4 所示。

同步辐射光源具有方向性强、高辐射强度、高稳定性、偏振性等性能。对于 XAFS 实验，它是具有广阔平滑连续谱的理想光源。使用单色仪可从同步辐射中选取一定波长的单色光，并可在一段波长范围内连续扫描，这一优点对 XAFS 测量极为有利。在测量样品中浓度很小的元素的 XAFS 时，同步辐射更是其他 X 射线源不能比拟的。并且同步辐射光源具有脉冲时间结构，这一特点有利于开展动力学过程的研究。

XAFS 实验需要波长可调的单色 X 射线。在同步辐射光源上，广泛使用平行双晶单色器，入射同步辐射束具有连续谱，经过平行双晶单色器，出射光束的方向与入射束平行，其波长 \(\lambda \) 由 Bragg 衍射公式 \(2d \sin \theta = n \lambda \) 决定，因此利用改变单色器与入射光束的夹角 \(\theta \) 来实现 X 射线的单色化和改变入射 X 射线的能量。值得一
提的是，出射光束中，除基波外，往往还有高次谐波存在，而高次谐波会对 XAFS 信号带来严重的扭曲，因此测量中需要消除。一般的方法是将双晶单色器第二块晶体适当转离平行位置，使单色器的两块晶体呈现一定的失谐（detuning），虽然这对出射光强有一定的减弱（一般减弱至 70–90%），但可以有效地抑制高次谐波。

为在测量中避免各种虚假信号的干扰，得到比较高的信噪比，实验中必须注意以下几点：调整好的光路既有最大的稳定光强同时又有效地消除高次谐波的影响；探测器在测量某一元素的 XAFS 数据的能量范围内具有良好的线性；在测量的全部能量范围内样品处的光斑位置和大小恒定；探测器至少有约 10^6 的实际光子计数，μ(E)数据的本底噪音水平低于 10^{-3}，以避免采集数据时统计涨落误差的影响。

下面简述最常用的两种 XAFS 探测模式：透射和荧光模式，有兴趣的读者可以查阅一些对实验方面有较深入描述的综述文章或章节[7, 8, 31]。

3.1.1. 透射模式

透射模式是采集 XAFS 信号最方便的方法，所得的谱也具有较佳质量，但它只对高浓度样品（一般待测元素的质量百分比＞10%）适用。如图 4 所示，一束单色光穿过样品，通过前、后电离室分别测量入射 X 射线 I_0 和出射 X 射线 I_t 的强度，可得吸收系数 μ(E)=ln(I_t/I_0)。通过转动单色器晶体而改变单色 X 射线的波长，就可得到波长连续可调的单色 X 射线，同时同步的测量 I_0 和 I_t，就可得到 μ(E)。

对于透射模式，后探测器依然为气体电离室，在保证后电离室有一定光子计数下，为了获得一个适当的 I_t 值，必须使电离室都工作在线性区，优化样品的厚度。一般来说，应调整单色光穿过样品的长度 d 以使跳高Δμd=1，（跳高: 前吸收曲线外延至吸收边 E_0 处，与吸收边曲线外延至 E_0 处的高度差值），这样就可以避免所谓的“厚度效应”对谱线的扭曲[32]。此外，样品需要尽可能均匀，没有孔洞，以避免漏光的现象。如果充分地满足了这些条件，那么透射法测量就能够给出高质量的 XAFS 谱。

鉴于透射法测量时吸收长度的重要性，在每次实验前，应清楚待测样品在待测吸收边处的吸收系数 μ（cm^{-1}）。对于单质，μ 与吸收截面 σ（g/cm^3）及材料密度 ρ（g/cm^3）之间的关系为 μ=ρσ；对于多种元素组成的物质，总吸收系数为：

$$μ = ρ \sum_i \frac{m_i}{M} \sigma_i,$$

其中，ρ_κ 为样品密度，m_i/M 为第 i 个元素的质量分数。需要注意的是，由于吸收截面依赖于能量，同一样品在不同吸收边的吸收系数是不同的。

下面给出一些不同样品的吸收长度的例子。对金属 Fe，密度 ρ=7.86 g/cm^3，
在其 K 吸收边（7112 eV）前、后的吸收截面值分别为 53.3 和 407.6 cm2/g，因此在吸收前后的吸收系数差 $\Delta \mu = \rho \Delta \sigma = 7.86 \times (407.6 - 53.3) = 2784.8$ cm$^{-1}$。根据透射法测量 $\Delta \mu d$ 的要求，样品的最佳厚度 $d = 1/2784.8 = 0.00036$ cm = 3.6 μm。对于 Fe 的氧化物如 Fe$_3$O$_4$，同样通过式 (5) 计算可知其最佳样品厚为 7.5 μm。对更重的金属如 Ag, 其 K 吸收边处的最佳样品厚度则大得多，达 21 μm。对浓度较低的溶液样品，样品厚度 d 通常在毫米量级。值得一提的是，在软 X 射线波段，样品最佳厚度要小得多；如金属 Al，最佳厚度只有 1.0 μm。如果要求的样品太薄，实际上很难以保证样品的均匀性，因此一般不采用透射法测量。

3.1.2. 荧光模式

在透射法的测量中，必须把样品调整到一个合适的厚度，以使跳高 $\Delta \mu d > 1$，但是对于浓度比较低的样品，这会使 d 很大，导致透射光的强度急剧衰减，从而信噪比迅速降低。在这种情况下，用荧光法测量更为适合。

为了采集到高质量的荧光 XAFS 谱，需要收集尽可能多的可用荧光信号。尽管通常情况下荧光发射是各向同性的，但是由于来自同步光源的 X 射线在电子轨道平面上是偏振的，因此散射强度是各向异性的。这意味着弹性散射在与入射光垂直的平面上是被强烈抑制的。因此，荧光探测器通常都布置在与入射光成直角的位置上，而样品则放置在与入射光和探测器均成 45°角的位置上，如图 4 所示。在这种排布方式下，在 $\Omega/4\pi$ 的立体角内探测器接收到的荧光信号强度 $I_f(E)$ 为:

$$
I_f(E) = I_0(\Omega/4\pi)\gamma \mu_A(E) \left[1 - \exp\left[-\left(\mu_{\text{tot}}(E) + \mu_f(E)\right) d\right]\right],
$$

其中 I_0 是入射 X 射线强度，γ 是荧光产额，E 为入射 X 射线能量，μ_f 是荧光 $K\alpha$ 射线能量，$\mu_A(E)$ 为待测元素 A 的吸收系数，$\mu_{\text{tot}}(E)$ 为样品中所有其它原子以及吸收原子中的其它未激发电子的吸 收，$\mu_{\text{tot}}(E_f) + \mu_f(E) \gg \mu_A(E)$ 时，由式 (6) 可见 $I_f \propto I_0 \mu_A(E)$，从而

$$
\mu_A(E) \propto \frac{I_f}{I_0},
$$

这就是荧光 XAFS 测量的依据。

需要特别强调的是，式 (7) 需要在如下极限情况下方能成立:

(1) 样品较薄 (例如厚度在 300 nm 以下)，这样式 (6) 中的 $(\mu_{\text{tot}}(E) + \mu_f(E))d$ $\ll 1$，$1 - \exp[-(\mu_{\text{tot}}(E) + \mu_f(E))d] \approx (\mu_{\text{tot}}(E) + \mu_f(E))d$，所以

$$
I_f(E) = I_0(\Omega/4\pi)\gamma \mu_A(E) \propto I_0 \mu_A(E).
$$

(2) 样品较厚，但待测元素浓度很低，这样 $\mu_{\text{tot}}(E) \gg \mu_A(E)$，
因此式（7）简化为

\[
I_f(E) = I_0(\Omega/4\pi) \frac{\mu_A(E)}{\mu_{tot}(E)} \propto I_0\mu_A(E). \tag{9}
\]

因此，对于厚而浓的样品，以上两个条件中的任一个都不能满足，那么 \(I_f \propto I_0\mu_A(E)\)将不能成立，导致荧光 XAFS 信号出现严重扭曲，这就是熟知的“自吸收效应”[33, 34]，实验中必须设法避免。

在荧光测量模式中，样品发射的 X 射线包括待测元素的荧光发射线、样品中其他元素的荧光发射线以及弹性和非弹性（康普顿）散射 X 射线。实验中希望仅采集待测元素的荧光信号，而完全抑制散射峰和其他荧光信号。通常的做法是在荧光探测器和样品之间加上滤波片，滤波片由含有吸收边在待测元素的荧光能量和 X 射线弹性散射能量之间的元素组成，这样它将允许待测元素的荧光 X 射线通过而将弹性散射 X 光子吸收。一般滤波片由原子序数比待测元素原子序数 Z 小 1 的元素（即 Z-1 元素）组成，可以将散射信号的强度降低一个量级。同时样品与电离室之间加上 Soller 狭缝，只允许样品发出的荧光通过，而将大部分的杂散光挡住。

用荧光法测量 XAFS 谱时，\(I_0\)探测器仍然可用气体电离室。当被测的元素的浓度不太低，荧光强度足够强时，可以用气体电离室作为荧光探测器[35]。在测量非常薄的薄膜样品或者浓度极稀的样品时，为了获得高信噪比的信号，常使用高灵敏和低噪音的多元高纯 Ge 固体探测器或探测器阵列[36]，它们的最大优点是具有很高的能量分辨率和很高的灵敏度，但测量时间相对较长。荧光法特别适合于分析样品中含量较少的元素（根据光源和样品的情况可达到 ppm 量级）[37, 38]。分析生物分子，例如金属蛋白质中的金属原子的近邻结构，是 XAFS 的重要应用方面。

总的说来，XAFS 具有以下优点：

（1）它决定于原子间短程有序作用，与研究对象的原子是否周期排列无关，对于样品的状态无特殊要求，即可以是固体和液体，还可以是气体等。

（2）具有元素选择性，可通过调节入射 X 射线能量对化合物或混合物中各种原子分别进行研究。

（3）利用高强度的同步辐射 X 射线源和荧光 XAFS 技术可以测定样品中含量很少的元素的原子近邻结构。

（4）利用同步辐射光源的偏振性，可以对有取向样品的键角进行测量，可测表面吸附原子的取向。

4. 原位 XAFS 测量的实验装置

XAFS 是精确测量原子局域结构的有效表征手段。除了对静态的原子结构进
行表征以外，近年来，对真实反应条件下的催化体系进行原位 XAFS 测量以获取原子结构的动态变化引起了人们越来越多的重视，相应的原位 XAFS 技术也得到了迅速发展[2, 5, 6]。

4.1. 气-固相反应原位实验装置

气-固相反应原位测量过程中，原位装置应该尽量符合特定反应的要求和 XAFS 测量本身对获得高质量数据的要求，因此需要依据具体反应的特点，合理地设计原位实验装置。通常应考虑以下因素：

（1）对需要加热的反应，原位实验装置的加热范围应满足相应反应体系所需的温度要求，加热器件能够承受所需目标温度，同时还需要完成精准的升温程序控制。

（2）催化剂中待测元素的含量决定了数据采集方式。在透射采集模式下，X 射线光路中不应有发热丝存在。在荧光模式下，为了收集尽可能多的荧光信号，必须确保信号窗口足够大，并且样品的位置尽可能靠近 X 射线窗口的位置。同时，信号窗口与发热丝之间需要有一定的距离，以避免过热。

（3）窗口材料的选择，需要根据被测元素的吸收边能量和原位实验装置所需承受的压力来决定。在常压常温条件下，一般选用 Kapton 薄膜作为窗口材料，其工作温度范围在 400 ℃ 以下。对高温或低温实验，多选用金属铍作为窗口材料，因为铍具有良好的化学、热稳定性以及超强的 X 射线透射能力。此外，立方氮化硼由于在 X 射线到远红外波段具有良好的透射率，也经常被选用为原位反应装置的窗口材料。

（4）气体进、出口方式应尽可能接近真实反应条件。在此基础上，流动气体还需要与催化剂完成充分接触，以保证催化剂活性位点的最佳利用率。

4.1.1 高温常压下的气-固相反应原位实验装置

1979 年，Lytle 等人[39]设计并制造了第一个用于热催化反应 XAFS 原位测量的反应池，由氮化硼制成的样品架垂直于 X 射线方向，可进行透射模式测试，并最大限度地减少反应池对 X 射线的吸收。随后，Lytle 等人[40]根据测量模式对原位实验装置进行了改进。该装置中样品架可旋转至与入射 X 射线束成 45°角的位置，从而也可以进行荧光模式采集数据。通过水冷管道确保了原位实验装置的外壳保持室温，并保护探测器和束线站中的其他电子元件不受热。此设计模型奠定了气-固相催化反应的原位实验装置的设计基础。

为了实现催化过程中多个温度区间的 XAFS 数据采集，Hannemann 等人[41]设计了用于 XAFS 测量的宽温度区间的透射/荧光模式下原位实验装置，该装置在样品架周围安装了一个液体容器和加热板，使冷却或加热温度分别降至液氮温度或升至 973 K 的温度。由于该类原位池的设计为两种探测模式的集成，因此加
热模式应谨慎选择，以避免加热装置对 X 射线束的屏蔽。

在原位装置的实际使用过程中，X 射线打到样品上后会发生散射或激发荧光，这些杂散光打到不锈钢原位池腔体会进一步激发出 Fe 的荧光从而有可能进入探测器，导致后电离室或荧光探测器收集到的信号扭曲，特别是测量低含量的 Fe 元素的吸收谱时影响更为严重。韦和路等人[2, 3]设计了用于多种气-固相催化反应的原位 XAFS 实验装置，该原位反应装置的整体设计思路为对压片后的催化剂粉末在升温条件下，进行透射和荧光模式测量（实物图如图 5），其加热腔体和隔热层均衬以 5 mm 厚的高纯度的石英层，以降低不锈钢腔体外壳的金属元素杂散光的影响，可用于样品中痕量 Fe 元素的测量。腔体窗口用 0.3 mm 厚的铍窗密封，最高耐压 1 MPa，可进行一定压强下的原位 XAFS 实验。

![图 5. 用于气-固相催化反应的原位 XAFS 实验装置的设计图和实物照片[2, 3]。](image)

4.1.2 高温高压下的气-固相反应原位实验装置

表性的原位实验装置，以研究固体催化剂在流动液体中反应的结构变化。采用CBN作为窗口材料，原位实验装置可在10 MPa的高压和900 K的温度（图6(b)）条件下进行实验。

图6. (a) Grunwaldt等人设计可适用于液相或固液反应的原位XAFS实验装置示意图[44]; (b) Kawai等人设计的高温高压原位XAFS实验装置示意图及实物图[45]。

Bare等人[46]设计了用于原位XAFS研究的原位实验装置，该设计的独特之处在于整个反应堆都是由Be制成的，而不仅仅是窗口材料，使得它们可以在高温（873 K）和高压力（14 bar）下工作。上海同步辐射装置BL14W1-XAFS束流线站还设计并制造了一个可承受0.6 MPa压力和600 °C高温的原位实验装置（如图7所示）。考虑到有限的X射线衰减，通常使用高分子薄膜作为X射线窗口材料。然而，聚合物材料的耐压和耐温性不足以满足严格的反应条件。因此，当使用聚合物薄膜作为窗口材料时，温度和压力分别不能超过500 °C和0.1 MPa。该原位实验装置由加热室、加热器和屏蔽层组成。在该原位实验装置中，Be膜的内部有一层聚合物薄膜，以隔离反应气体，并保护Be层不受污染。同时，复合窗口材料可以提供相当大的耐压和耐高温能力。该系统使反应气体更加均匀地流动，降低了保护层和装置外层的温度，从而也对操作人员起到了保护作用。
4.2. 固-液相反应原位实验装置

由于大多数的固-液相电催化反应（析氢、析氧、氧还原、CO₂还原等）均在常温常压下进行，所以电化学原位 XAFS 测试的反应池通常仅包含窗口、电极（工作电极、对电极、参比电极）插入口、电解液进出口等部件，很少涉及加压、加热或保温装置[47]。本节将对固-液相反应原位实验装置进行总结，为固-液相电催化过程的动态机制研究提供指导和借鉴。

4.2.1 半反应测试的固-液相原位池

为明确电催化剂的活性结构在反应过程中的动态变化，需要针对该电催化反应在三电极体系中进行原位 XAFS 测试。该类非工况条件的电化学测试通常在酸性或碱性电解液的水溶液中进行，并且使用铂网/碳棒作为对电极。Abruía 等人[48]报道了一种用于透射模式下原位 XAFS 测试的电化学反应池。该原位池为三电极体系反应池，如图 8（a）所示。反应池由聚四氟乙烯（PTFE）材料制成，两块 PTFE 板可以用六个螺丝紧密密封，PTFE 板之间放置有 U 型的密封圈。反应池中电解液的厚度可通过六个密封螺丝调节至 200 μm 以下，从而避免电解液对 X 射线信号的干扰（图 8（b））。在反应池的顶部配有包含气体进出口的密封盖，以满足原位 XAFS 测试过程中电化学反应对气体的需求。工作电极使用 200 μm 厚的碳布作为载体，催化剂层的厚度约 40 μm。在反应池内部，将带有催化剂层的碳纸部分浸入 X 射线窗口附近的电解液中。碳棒用作对电极（CE）并放置在工作电极（WE）附近。参比电极（Ag/AgCl）通过盐桥（KCl）的方式与反应池相连，以尽可能减少超薄电解液层对电化学测试期间的 IR 降。研究人员利用该原位池成功实现了对电催化剂氧还原反应过程中 Co₁₀₃Mn₁₅O₄/C 催化剂活
性结构变化的原位 XAFS 测试。

图 8. (a) 透射模式下原位电化学反应池示意图；(b) 原位电化学反应池实物图（包括细节部分放大图）[48]。

为了保证电催化反应过程充分的扩散动力学，原则上需要电解液厚度大于 10 mm。然而，在透射采集模式下，为减少穿过电解液的 X 射线光子强度的指数衰减一般需要减小电解液厚度在 2 mm 以下。因此在电催化反应表界面动力学的原位 XAFS 测试中，荧光采集模式具有更大的优势。为了避免水溶液的影响，背入射荧光采集模式被大量用于探测电催化反应过程中工作电极表界面的动态演变，如图 9 (a) 所示，入射的 X 射线光子从工作电极的背面照射，激发的有效荧光信号也在工作电极的背面一侧被收集[49]。常用的原位池的池体采用聚醚醚酮树脂 (PEEK) 材质或有机玻璃 (PMMA) 材质制成，如图 9 (b) 所示，池体的溶剂约 50 mL。对于 PEEK 材质的原位池适用于对反应密封性有要求的电催化反应，池体顶部带有电极插入口以及气体出入口，可通过螺丝密封，装载工作电极的一侧池体与 X 射线入射方向呈 45°。为降低 X 射线光子强度的损失，工作电极背面紧贴原位池的 X 射线窗口并使用窗口片固定，窗口采用 Kapton 薄膜密封。PMMA 材质制成的原位池具有简单易操作的优点，涂有催化剂的工作电极被 Kapton 胶带粘贴在窗口位置，同时窗口被 Kapton 胶带密封以防漏液，参比电极、对电极、气体管路等均从原位池顶盖的孔隙中插入[50]。该类型的原位池被研究者广泛采用，并进行了大量的有关电催化反应过程中催化剂结构动力学演变的研究工作[51, 52]。
图 9. (a) 荧光模式下电催化反应池及原位 XAFS 测试示意图[49]; (b) 荧光模式的电化学原位池[50]。

4.2.2 工况条件下的固-液相反应原位池

许多固-液相电催化反应（如氧还原、水电解等）是能量转换装置中重要的阴/阳极反应。由于针对单电极半反应研究的电化学反应池与实际能量转换装置中的催化反应条件在湿度、气体压力等方面存在着差异性，因此工况条件（Operando）下的能源转换装置中催化剂材料结构演变的研究也具有重要意义。Smotkin 等人[53]设计了如图 10 (a) 所示的应用于原位 XAFS 测试的燃料电池装置。装置由两个石墨板 (9.52 cm × 9.52 cm) 支撑。石墨板的厚度约为 1.9 cm，面积为 1 cm² 的 X 射线窗口开在石墨板的外侧中央，深度约 1.5 cm。因此，X 射线到达电极时仅需要穿过 4 mm 厚的石墨板。石墨板中带有与窗口连通的燃料进/出入通道以及放置微型加热器的孔洞。两个气体扩散层分别与阴、阳极催化剂紧密贴合，中间用 Nafion 117 交换膜隔开组成膜电极（MEA）组件。MEA 夹在两个 PTFE 垫圈中间。完整组装的燃料电池的图片如图 10 (b) 所示，图 10 (b) 中 2 和 3 分别显示石墨板的内侧面和外侧面。在进行原位 XAFS 测试时，该燃料电池装置被组装在与 X 射线束平行的平台上，在原位池和平台之间放置硅橡胶片，以使反应池绝缘。该原位装置可用于多种燃料电池阴/阳极催化剂的原位 XAFS 表征。Smotkin 等人利用该原位装置在美国阿贡国家实验室的先进光子源（APS）实现了在聚合物电解质燃料电池运行过程中对阳极 Pt_{50}Ru_{50} 合金催化剂中 Pt L_{2,3} 边和 Ru K 边的原位 XAFS 测试。此外该原位装置还可以通过在阳极输送甲醇燃料来进行甲醇燃料电池中阳极甲醇氧化电催化剂的原位 XAFS 表征。
图 10. (a) 燃料电池的原位 XAFS 测试装置分解示意图；(b) 燃料电池的原位 XAFS 测试装置照片[53]。

5. XAFS 技术在能源催化材料的原位化学测量研究中的应用

XAFS 技术对吸收原子周围的局域结构和化学环境敏感，能够给出吸收原子周围的配位结构和价态、电子结构等信息，且对样品的聚集形态、结晶性没有要求，可在不破坏样品的条件下对固态、液态样品进行原位测量，特别适合于对真实反应状态下的催化材料体系进行结构演变研究。通过原位 XAFS 深入研究催化剂中的原子和电子结构，有助于理解催化剂的结构-性能之间的关系，并用于指导催化剂材料的设计和制备。下面将概述原位 XAFS 技术在与能源有关的纳米催化剂材料研究的作用，其中，利用 XAFS 技术获得的参数信息、优点、不足以及挑战的总结性表格如表 1 所示。
表 1. XAFS 技术获得的参数信息、优点、不足以及挑战

<table>
<thead>
<tr>
<th>类别</th>
<th>静态 XAFS</th>
<th>原位 XAFS</th>
<th>原位 XAFS 优点</th>
<th>原位 XAFS 不足</th>
<th>原位 XAFS 挑战</th>
</tr>
</thead>
<tbody>
<tr>
<td>参数与信息</td>
<td>近边：吸收原子周围的电子结构、三维空间配位构型、对称性等，具有“指纹效应”；扩展边：主要反映吸收原子周围的原子结构信息，如配位原子种类、个数、键长、无序等信息。</td>
<td>研究催化剂在真实气固相反应下的原子与电子结构，有助于理解催化剂的结构-性能之间的关系及反应机理，获得正确的构效关系。</td>
<td>共同点：只能给出吸收原子的局域结构信息，对长程有序的结构信息不如 XRD；得到体相平均信息，难以直接给出表面信息；不具有位置敏感性，本身无法确定 3D 结构；数据分析过程较为复杂，且易出错。</td>
<td>高温与加压等苛刻反应条件会导致反应体系的无序较大，使高 k 处的数据信噪比变差，数据质量下降。</td>
<td>同步辐射 XAFS 机时极为紧张，可通过发展实验室台式 XAFS 仪以制以补充，但其数据质量有待提升。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>同步辐射 XAFS 机时极为紧张，可通过发展实验室台式 XAFS 仪以制以补充，但其数据质量有待提升。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>同步辐射 XAFS 机时极为紧张，可通过发展实验室台式 XAFS 仪以制以补充，但其数据质量有待提升。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>同步辐射 XAFS 机时极为紧张，可通过发展实验室台式 XAFS 仪以制以补充，但其数据质量有待提升。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>同步辐射 XAFS 机时极为紧张，可通过发展实验室台式 XAFS 仪以制以补充，但其数据质量有待提升。</td>
</tr>
</tbody>
</table>

https://engine.scichina.com/doi/10.1360/SSC-2023-0153
http://chemcn.scichina.com
5.1 原位 XAFS 技术在气-固相反应研究中的应用

近几十年来，金属催化剂在气-固相催化反应中被广泛用于气-固相催化反应。贵金属催化剂，与非贵金属催化剂或其他催化剂相比，具有反应活性高，稳定性好，循环再生能力强，环境友好等优点，但地球上贵金属有限的储量，导致其难以实现大规模的工业化，因此，提高贵金属的有效利用率具有十分重要的实际应用意义。这就需要通过原位表征手段去观察催化剂的动态结构，理解其构效关系，进而改进催化剂的设计，减少贵金属的用量。此外，非贵金属作为一种具有良好活性的低成本催化剂也引起了人们的兴趣，其缺点是在催化气-固相反应过程中往往会发生明显失活。因此，通过原位表征手段探究失活及反应机理，获得明确的构效关系，对于推进此类催化剂的工业化应用是非常重要的。下面将结合上述原位实验装置的设计来讨论原位 XAFS 技术在气-固相催化反应中的应用实例。

5.1.1 一氧化碳氧化反应研究

一氧化碳（CO）催化氧化反应是催化中研究最广泛的反应，作为模型反应帮助人们认识了很多催化反应的基础科学问题，同时也有很大的实用价值，与许多工业领域中重要的反应，如汽车尾气的净化、质子交换膜燃料电池中富氢条件下的 CO 选择性氧化反应（PROX）、水煤气变换反应等有非常大的相关性。近几十年来，大量科研工作者使用 Pt、Au、Pd 等负载型贵金属纳米粒子（NPs）、团簇以及单原子，对 CO 氧化进行了大量的研究[54-56]，探究催化剂结构与真实活性位点的构效关系，促进了对多相催化领域的理解。

路和韦等人[5]通过原位 XAFS 技术，探究了在 PROX 反应的真实环境下，xcFe-Pt/SiO2 系列催化剂在不同化学环境下的真实结构。该催化剂在 198~380 K 的宽温度范围内实现 PROX 反应下 100%选择性的完全氧化 CO，质量比活性比 FeO 载体上负载 Pt 的传统催化剂高约 30 倍。Fe 的 K 边原位 XAFS 结果如图 11 (a, c) 所示，所制得的原始催化剂（1cFe-Pt/SiO2-O）中，Fe 以 Fe3+ 的 Fe(t)(OH)x 反团簇形式存在于金属态 Pt 纳米颗粒上。经 H2 还原后（1cFe-Pt/SiO2-R），Fe3+ 被还原为 Fe2+，Fe-O 距离变长，同时在 FT 曲线上出现一个 2.57 Å 的配位峰，对应于金属 Fe-Pt 键的形成。而暴露于 PROX 反应气氛中（1cFe-Pt/SiO2-P），Fe K 边 XANES 谱的边前峰 A 重新出现，表明在 PROX 条件下，Fe 从 Fe2+ 可逆氧化为 Fe3+，金属 Fe-Pt 键始终保持。对 EXAFS 的 FTs 曲线进行定量拟合，揭示每个铁原子周围有两个配位 O 原子位于 1.96 Å 处，一个 O 原子位于 2.01 Å（如图 11(c)），形成一种 Fe(t)(OH)3-Pt 的界面结构。图 11(c, d) 中的 Pt L3 边原位测量结果表明，1cFe-Pt/SiO2-R 和 1cFe-Pt/SiO2-P 中的 Pt 均保持为金属态，密度泛函理论（DFT）计算表明，Pt 上吸附的 CO 选择性地与单位点 Fe(t)(OH)3-Pt 中较长的 Fe-OH 键反应形成 COOH* 和 Fe(t)(OH)2，Fe(t)(OH)2 与 O2 分子结合形成 Fe(t)(OH)2O2，它与 COOH* 反应无势垒地释放出 1 个 CO2 分子和 Fe(t)(OH)2O，后者再与另一个 CO 反
应生成 CO₂ 和 Fe₃(OH)₃。整个过程中，CO 与 Fe₃(OH)₃—Pt 形成 COOH* 是反应的决速步。这些发现表明形成孤立的过渡金属复合物为得到高活性的金属催化剂提供了新的途径。

![图 11](https://engine.scichina.com/doi/10.1360/SSC-2023-0153)

图 11. (a) 1cFe-Pt/SiO₂ 样品在每次处理前后的 Fe K 边的 RT XANES 谱；(b) 1cFe-Pt/SiO₂ 样品在每次处理前后的 Pt L₃ 边的 RT XANES 谱；(c) 1cFe-Pt/SiO₂ 样品在每次处理前后的 Fe K 边的 EXAFS 谱的 FTs 图；(d) 1cFe-Pt/SiO₂ 样品在每次处理前后的 Pt L₃ 边的 EXAFS 谱的 FTs；(e) 1cFe-Pt/SiO₂-O（左）、1cFe-Pt/SiO₂-R（中）和 1cFe-Pt/SiO₂-P（右）的结构模型图[5]。

Datyé 等人[57] 以 CO 氧化为探针反应对 Pd/Al₂O₃ 和 Pd/La-Al₂O₃ 单原子催化剂进行了对比研究，并借助原位 XAFS 技术探究了 Pd 原子周围局部环境的变化。在 CO 氧化气氛下，发现原子分散的 Pd/La-Al₂O₃ 比 Pd/Al₂O₃ 催化剂更耐烧结。此外，Pd/La-Al₂O₃ 催化剂即使发生烧结，暴露在 973 K 空气气氛下，催化活性完全可以再生。这项研究表明原位 XAFS 研究在了解单原子在氧化和还原气氛下的稳定性和可逆性方面能提供很大的帮助。

接的 Pt–CoO 界面更有利于催化性能的提升。孙等人[2]观察到虽然 Pt-Co//Al₂O₃双金属催化剂在干燥条件下有极佳的 CO 催化氧化活性，但在潮湿的反应条件下，其活性急剧降低，而掺杂 La 后可显著保持其抗水性。利用原位 XAFS 结合原位慢反射红外傅里叶变换（DRIFT）技术，证明了在 CO 氧化条件下，La 以 La₂O₃的形式掺杂在 Pt-CoO/Al₂O₃ 中，其中 La₂O₃ 具有抑制活性位点碳酸盐形成和修饰 Pt 电子结构的双重作用。La₂O₃ 与活性 Pt–O–Co 界面位之间的协同作用，使得 La 掺杂 Pt-CoO/Al₂O₃ 在满湿条件下保持优异的催化活性。本研究表明，La₂O₃或其他稀土氧化物是一种重要的增强金属-氧化物界面抗水性的添加剂，可以为实际应用提供一种有效的设计抗水催化剂的策略。

5.1.2 二氧化碳加氢还原反应研究

二氧化碳（CO₂）加氢是重要的平台反应，可用于生产替代液体燃料和烯烃、高碳醇、芳烃等具有高附加值的化学品。此外，通过该反应还能实现煤炭、生物质、工业捕集 CO₂ 等碳资源的高效资源化利用，且能有效利用“绿氢”和工业副产氢资源，对达成“双碳”战略目标有着十分重要的意义。CO₂ 加氢反应中，高效催化剂的设计是重点，因此利用 XAFS 技术认识催化反应的真实活性位点以及建立和理解催化反应构效关系至关重要。

路等人[58]利用原位 XAFS 技术，探究了在 CO₂ 加氢反应条件下，不同负载量的 Pd/Ga₂O₃ 催化剂结构随着还原温度的升高而发生变化。该催化剂能够在更低的温度（~250℃）下引发反应中的金属-载体相互作用（RMSI），以及低温 RMSI 引发了罕见的富 Ga 的 PdGa 合金相的形成，这与传统 Pd/Ga₂O₃ 催化剂在高温还原后形成的 Pd₃Ga 相不同（图 12）。随着还原温度的升高，5%Pd@8cGa₂O₃ 与 5%Pd@8cGa₂O₃ 催化剂中的 Pd 均表现相似的金属态，与 5%Pd/Ga₂O₃ 相比，5%Pd@8cGa₂O₃ 的振荡幅度比 5%Pd/Ga₂O₃ 的振荡幅度下降得更快（图 12(a, b)），这意味着 5%Pd@8cGa₂O₃ 中 Pd 元素的配位数下降更急缓，EXAFS 光谱的傅里叶变换（FTs）也证实这一点（图 12 (c, d)），具体表现为 Pd-Pd 配位下降更快，Pd-Ga 配位也迅速增加。对于 5%Pd@8cGa₂O₃，作者观察到在 250℃ 下经过 H₂ 还原后，Pd-Ga 配位数从 1.9 迅速增加到 6.7，同时 Pd-Pd 配位数从 8.3 大幅下降到 6.2，证实了富 Ga 合金相的形成；随着还原温度升高至 400℃，Pd-Pd 与 Pd-Ga 配位数与标样 Pd₃Ga 中对应的配位数接近，表明形成了 Pd₃Ga 合金相。这些发现为将 RMSI 扩展到低温加氢反应领域提供了一条新的途径，使得制造用于高效催化的新金属合金相成为可能。
图 12. Pd/Ga$_2$O$_3$ 在不同温度下 H$_2$ 还原后的原位 XAFS 表征。 (a) 5% Pd/Ga$_2$O$_3$ 和 (b) 5%Pd@Ga$_2$O$_3$ 的 k^3 加权 EXAFS 振荡谱; (c) 5% Pd/Ga$_2$O$_3$ 和 (d) 5%Pd@Ga$_2$O$_3$ 的傅里叶变换 EXAFS 光谱; (e) 5%Pd/Ga$_2$O$_3$ 和 (f) 5%Pd@Ga$_2$O$_3$ 的配位数 CN$_{Pd-Pd}$ 和 CN$_{Pd-Ga}$ 在不同温度下还原的最小二乘 EXAFS 曲线拟合结果[58]。

Müller 等人[59]利用原位 XAFS 等表征手段先后观测了 In$_2$O$_3$ 和 In$_2$O$_3$-ZrO$_2$ 催化剂在 CO$_2$ 加氢反应条件下的动态结构演变并且提出 In$_2$O$_3$ 催化剂初期的活化和 In$_2$O$_3$ 的表面部分还原和氧空位的生成相关，但是长期反应后过度还原产生的 In 金属导致了催化剂的逐渐失活。相反，In$_2$O$_3$ 氧化物可以与 m-ZrO$_2$ 形成固溶体，从而避免 In 物种因过度被还原而发生失活，该工作对于认识 In$_2$O$_3$ 基催化剂的活化和失活机制起到了重要作用。Shimada 等人[60]利用原位 XAFS 技术探究了 CO$_2$ 高压加氢过程中 Rh 离子交换沸石催化剂的动态结构变化，结果发现在 404 K 时，Rh-O 散射峰变为 Rh-Rh 散射峰，并在 CO$_2$ 加氢反应 30 min 后，分配给 Rh-Rh 散射的峰值强度随着催化活性的提高而增加。

Yamashita 等人[61]通过利用原位 XAFS、原位 DRIFT 和 DFT 计算的综合分析，证明了准稳态的 HM$_2$MoO$_{3+y}$ 催化剂中丰富的表面氧空位 (V$_0$) 和 Mo 物种的氧化还原能力使催化剂具有增强的吸附和活化能力，从而催化 CO$_2$ 加氢转化为
甲醇。此外，Pt 纳米颗粒作为 H₂ 解离位点再生氧空位，并作为 CO 中间体的加氢位点最终产生甲醇。在实验和计算研究的基础上，提出了氧空位介导的“逆 Mars-van Krevelen（M-vK）”机制。本研究为设计和开发高效的非均相 CO₂ 加氢催化剂提供了新的思路。

5.1.3 丙烷直接脱氢反应研究

煤制油和催化裂化过程中产生大量的低碳烷烃（如丙烷），将其转化为烯烃等基础化学品是实现其高值转化的重要途径。这对优化我国能源结构，减少资源浪费，推动“碳达峰、碳中和”目标的实现具有重要研究价值。传统的丙烯生产方法，例如轻柴油蒸汽裂解、煤制烯烃等已不能满足日益增长的需求。因此，开发高效的丙烯生产技术对于科学研究与经济发展都是至关重要的。丙烷直接脱氢（PDH）工艺是最有前途的生产方法之一。实现高效 PDH 的关键在于研发性能优异的催化剂，因此，利用原位 XAFS 技术研究金属物种的结构和配位状态对揭示催化作用机制以及指导催化剂的设计具有重要作用。

Galvita 等人[62]利用原位 XAFS 技术探究了原子层沉积 Al₂O₃ 涂层对 PtGa 双金属体系用于 PDH 过程中的影响。XAFS 结果表明（图 13），通过浸渍法制得未涂覆的 PtGa/MgAl₂O₄ 样品更容易形成合金，而于同采用浸渍法制得涂层的 PtGa/MgAl₂O₃ 样品，由于 Al₂O₃ 涂层阻碍了形成合金所需的表面 PtOₓ 和 GaOₓ 纳米颗粒的自由迁移，Pt 和 Ga 之间的合金化程度受到限制，多次氧化还原循环过程促使 PtOₓ 和 GaOₓ 在表面上发生迁移，从而产生更多的 PtGa 合金。除了间接证实了涂层的存在外，还验证了在粉末催化剂上通过原子层沉积 Al₂O₃ 涂层是可行的。因此，经过多次氧化还原循环后，最好在样品沉积 Al₂O₃ 涂层，从而形成最优组成的合金催化剂。

![图 13](https://engine.scichina.com/doi/10.1360/SSC-2023-0153)

图 13. 不同样品在每次处理（H₂-TPR CO₂-TPO, H₂/O₂ 氧化还原循环以 H₂ 还原步骤结束）前后的 RT XANES 谱：（a）未经过原子层沉积 Al₂O₃ 的 PtGa/MgAl₂O₄ 和（b）经过原子沉积 Al₂O₃ 的 PtGa/MgAl₂O₃[62]。

通过沉积法直接合成的不同样品（Pt/MgGaAlOₓ, 10Al₂O₃/Pt/MgGaAlOₓ 和 40Al₂O₃/Pt/MgGaAlOₓ）未发现以上浸渍法制备的样品的问题。这主要是因为这种样
品的合金化过程不依赖于纳米颗粒的表面位置。相反，对于浸渍制备的样品，位于靠近 Pt 的载体中的 Ga 将通过 H₂ 溢出并从载体中扩散出来，从而更易形成 PtGa 合金，如图 14 所示。因此，沉积法制得的样品中涂层的存在不影响合金形成的过程。

![Pt/MgGaAlO样品示意图](https://engine.scichina.com/doi/10.1360/SSC-2023-0153)

图 14. Pt/MgGaAlO 样品不同样品在每次处理（H₂-TPR, CO₂-TPO, H₂/O₂氧化还原循环以 H₂还原步骤结束）前后的 RT XANES 光谱：(a) 未经过原子层沉积 Al₂O₃ 的 Pt/MgGaAlO 和 (b) 经过原子沉积 Al₂O₃ 的 Pt/MgGaAlO[62]。

巩等人[63]基于原位 XAFS 技术、X 射线光电子能谱 (XPS) 测量和 DFT 计算，作者发现 PtZn 金属间化合物中的表面[PtZn₄]结构是关键的活性位点，其中[PtZn₄]结构中几何隔离且富含电子的 Pt 位易促进丙烷的第一次和第二次 C–H 裂解，同时促进表面丙烯的解吸，并通过结构有序阻止 Pt 和 Zn 原子的积碳和偏析来提高稳定性。该工件为制备高效的 Pt 基脱氢催化剂提供了一种具有创新性的途径，即通过组装原子成结构有序的金属间化合物，将 Pt 原子分离成单位点催化剂，进而为催化脱氢反应以及处理 CO₂, N₂ 和其他含碳燃料的强活性位点的开发提供新策略。

Copéret 等人[64]结合原位 XAFS 技术、扫描透射电子显微镜、电子顺磁共振和 DFT 计算，研究表明，Mn²⁺修饰载体与意外分离的 PtMn 颗粒之间的强相互作用最有可能是 PtMn/SiO₂ 催化剂高活性与稳定性的来源。结合 EXAFS 分析和 DFT 计算，发现 Pt 和 Mn 存在明显的空间偏析，Pt 主要形成颗粒的内部，而大部分 Mn⁰ 聚集在 Pt 和 SiO₂ 载体之间的界面，在 Pt 核周围形成半壳层结构。尽管 PtMn/SiO₂（3 wt % Pt, 1.3 wt % Mn）的分离性质对高性能 PDH 催化剂来说是有害的，但它显示出很高的生产率。此外，与单金属 Pt 相比，PtMn/SiO₂ 在连续再生循环中表现出很强的稳定性，这种强稳定性归因于纳米颗粒表面的 Mn⁰ 与 Mn²⁺修饰的氧化硅载体的强相互作用，使得在如此高温的条件下减少了催化剂的烧结。

PtSn 团簇的结构特征是在丙烷脱氢反应中提供了低一个数量级的低失活速率，同时保持较高的初始催化活性的关键。然而团簇的结构特征通过常规表征技术
术很难观察到。Corma等人[65]通过结合原位XAFS表征与高角度环形暗场扫描透射电子显微镜等技术，验证了亚纳米PtSn簇结构特征的细微变化会极大地影响其丙烷脱氢性能。

5.1.4 苯甲醇氧化反应研究

作为多用途化学中间体的苯甲醛，在制药工程、香水制备和精细化工生产等领域有着广泛的应用，因此采用苯甲醇催化氧化法制备高纯度苯甲醛在工业中受到重视。通过催化生产高纯度苯甲醛的关键在于开发性能优异的催化剂，因此，利用原位XAFS技术研究催化剂动态结构变化与构效关系对理解催化反应机制以及制备高效催化剂具有重要作用。

路等人[6]通过原位XAFS技术，探究了不同Au@Pd双金属催化剂在苯甲醇氧化反应条件下配位环境与组分的关系。如图15所示，在EXAFS扩展边精细结构谱中，Pd foil表现出归属于Pd的不对称双峰，位于2.5 Å附近的主峰来自于第一壳层中近邻的Pd-Pd配位，2 Å处的小峰是重元素Pd的散射相移的非线性效应产生的边瓣峰。相比之下，Aux@SubML-Pd样品的峰信号振幅明显降低，双峰也更对称。随着Au核尺寸的增加，第一近邻壳层的峰位置也逐渐向更高R位置偏移。Au_{2.8}@0.6ML-Pd双峰位置分别位于2.14和2.75 Å，而Aux_{6.8}@0.6ML-Pd双峰位置分别位于2.24和2.85 Å。这些结果表明，与单金属Pd相比，双金属合金样品中Pd和Au间的距离更长配位数更低。值得注意的是，所有Aux_{yML-Pd}样品在k空间和R空间的EXAFS振荡与Au foil的震荡高度重合，说明核壳结构中Au的配位结构与Au foil的结构相似，即双金属未发生明显的合金化。这些发现突出了双金属催化中的共轭双粒径效应。

图15. 不同Au核尺寸的Aux@SubML-Pd合金单原子催化剂以及不同Pd壳层厚度的Aux@yML-Pd核壳催化剂的傅里叶变换EXAFS在R空间显示催化剂结构演变的信息。（a）Pd K边；（b）Au L3边[6]。
Baiker等人[66]采用原位XAFS和衰减全反射红外光谱（ATR-IR）相结合，研究了Bi对0.75 wt% Bi-5 wt% Pd/Al$_2$O$_3$催化剂液相好氧氧化过程中表面物质演化和结构的影响。XAFS结果表明，在该条件下，Bi和Pd都处于还原态。在有氧条件下，ATR-IR和XAFS都表明Bi控制了贵金属的氧气供应。此外，在不同实验条件下，Pd都保持金属态。这是因为Bi使得Pd/Al$_2$O$_3$催化剂具有更强的抗过氧化能力，因此在存在过量氧气的情况下，其活性时间更长。最后，在Bi的存在下，苯甲醛水合/氧化生成羧酸盐受到很大阻碍。这项研究展示了两种技术结合的潜力，通过XAFS得出粒子结构/氧化态，通过ATR-IR确定表面物质的结论，从而实现结构与催化性能相关联。

Baiker等人[67]报道了在Pd/Al$_2$O$_3$催化剂上，在超临界CO$_2$气氛下进行了原位XAFS技术表征催化剂结构，EXAFS和XANES结果表明，暴露于超临界CO$_2$中含有苯甲醇的环境下，Pd颗粒被完全还原。与Pd催化的液相氧化相比，该催化剂具有更高的氧化耐受性。在典型的反应条件下（0.9 mol%的甲醇/0.5 mol%的O$_2$/CO$_2$），Pd在表面部分氧化，随着进料中氧气浓度的提高，Pd的氧化量逐渐增加。XANES和EXAFS数据都显示Pd主要在表面或最外层被氧化。最后，结果表明，催化剂的表面性质和结构可能与常压下的催化剂有明显的不同，强调了高压条件下原位XAFS表征技术的必要性。

5.2 原位XAFS实验方法在固-液相反应中的应用

在资源与环境问题日益严峻的时代背景下，清洁、可持续的电化学储能和转换技术是实现能源消费结构优化升级的重要途径之一。然而，目前大多数固-液相电化学能量转换过程，如析氢反应（HER）、析氧反应（OER）、氧还原反应（ORR）和二氧化碳还原反应（CO$_2$RR）等，所使用的电催化剂很难满足大规模工业化生产的需求[68]。因此，先进的电催化材料制备和表征技术仍然是未来能源革命的核心[69]。原位XAFS研究可以深入了解催化剂中金属中心周围的局域结构变化，是获得固-液相反应过程中的材料结构和性能关系的有力工具[70, 71]。在本节中，我们将重点介绍原位XAFS实验技术在典型的固-液相电催化反应中的应用进展，以期为催化反应过程机理的研究提供有益借鉴。

5.2.1 电催化水分解反应研究

氢作为一种高能量密度的零碳能源载体，被认为是一种很有前途的可持续能源。电解水裂解制氢技术已受到广泛关注。其中，析氧反应（OER）涉及多电子转移过程，动力学反应较慢，是制约整个电水解装置效率的关键因素。揭示其催化反应机理对于提高电催化剂活性、稳定性和降低能源转换成本至关重要[72, 73]。韦等人[74]设计借助原位XAFS实验技术从原子级别表征了Ir单原子催化剂在电催化析氧反应过程中的真实活性结构及其动态演变。作者通过电驱动氨基
沉积的策略开发了异氮配位的 Ir 单原子催化剂 (AD-HN-Ir) 并用于催化酸性 OER。原位 XANES 表征结果如图 16（a）所示，在反应电位驱动下电子从 Ir 位点向周围配位原子转移，金属 Ir 的电子空位增加。图 16（b）中的 EXAFS 图谱显示在预催化阶段的 1.25 V 电位下，非金属配位壳层（Ir-N/O）的峰值强度与非原位状态相比有所增强。相应的 XAFS 拟合分析显示，除了初始的 Ir-N₄ 构型外，Ir 位点上出现一个与氧吸附有关的 Ir-O 键 (图 16（c）)。当电位升高到 1.35 V 和 1.45 V 时，Ir-N/O 配位峰的强度进一步增强，扩展边中相应的峰位置出现偏移，这可能与吸附在单位点上的羟基的进一步演化形成*OOH 中间体有关。该原位表征深入解析了 O-hetero-Ir-N₄ 单原子活性位点在催化 OER 的动态作用过程。此外，过渡金属 Co 基单原子催化剂活化过程中原位形成的 Co-Fe 二聚体双位点结构也被胡等人通过原位 XAFS 光谱进行了研究，其中通过桥接 O 原子连接后形成的 Co-Fe 双原子位点能够与 OH/OH₂ 基团强耦合，从而促进双位点单原子催化剂（Co-Fe SACs）具有高的内在 OER 活性[75]。

图 16.（a）AD-HN-Ir 催化剂的 Ir L₃ 边的原位 XANES 谱图；（b）相应的原位 FT-EXAFS 谱图；（c）三个电压下金属 Ir 配位环境的原子结构图解[74]；（d）单层 Ni(OH)₂ 和（e）多层 Ni(OH)₂ 的 Ni K 边原位 XANES 光谱[76]。

羟基氧化物（LDH）材料是研究最广泛的 OER 电催化剂。为了明确 LDH 材料中的催化反应活性相并揭示微观催化反应机制，郭等人[76]借助应用于固-液界面的原位 XAFS 技术研究了 Ni 基层状氧化物（LDH）表面金属位点对于析氢反应（OER）的高效电催化作用。单层 Ni(OH)₂ 和多层 Ni(OH)₂ 在不同电压下的原位 XAFS 测试结果如图 16（d-e）所示。原位 XANES 谱图反映出随着施加电位从 1.30 增加到 1.50 V 时，单层 Ni(OH)₂ 中 Ni K 边的边前能量位置逐渐向高能边移动，在 1.35 V 的电位下突破三价 Ni(III) 界限，开始生成高价态 Ni(IV)。
相比之下，多层 Ni(OH)\textsubscript{2} 的 Ni \textit{K} 边在达到 1.55 V 的高电位之前没有表现出显著变化（图 16（e）），在小于 1.50 V 的电位下只显示出低于 Ni（III）的恒定价态。因此，原位 XAFS 表征表明单层 Ni(OH)\textsubscript{2} 纳米片可以在较低电位下达到高价氧化态 Ni（III）和 Ni（IV）共存的状态，这对于提升电催化 OER 动力学过程十分有利。类似地，Bell 等人[77]也利用原位 SR-XAFS 光谱技术确定了(Ni,Fe)OOH 催化剂表面 Fe 位点对 OER 过程的催化作用。当外加电位升高时，Fe 和 Ni 位点周围的局部配位结构发生了显著变化，对应于 α-NiFe(OH)\textsubscript{2} 物种在电位驱动下向 γ-NiFeOOH 物种发生了相变。这种结构变化伴随着 Ni2+被氧化为 Ni3+，并在(Ni,Fe)OOH 中保留了原来的 Fe3+状态。结合 DFT 计算结果，OER 中间体在(Ni,Fe)OOH 中的 Fe 位点上具有最佳的吸附能。目前许多针对反应过程的原位研究结果表明金属基氢氧化物的内在 OER 动力学不仅依赖于金属物种的最终氧化状态，还依赖于金属中心在反应过程中的价态变化情况[78, 79]。

电解水裂解制氢技术中的析氢反应（HER）在清洁能源的转化与存储中扮演着重要作用。HER 电催化剂在反应过程中的局域几何/电子结构变化对于揭示电催化反应动态过程至关重要[80, 81]。韦等人[82]针对电催化析氢反应（HER）过程进行了原位 XAFS 研究，以探索在 HER 条件下单原子 Co 位点的活性起源。在这项工作中，原子分散的 Co 在磷化的氮化碳（PCN）框架中形成结构均匀的 Co\textsubscript{1-N\textsubscript{4}}活性结构。如图 17（a）所示，Co\textsubscript{1}/PCN 催化剂在开路电压及 HER 反应电位下，Co 的边缘高能方向移动，表明 Co 氧化态持续增加。EXAFS 谱图的定量分析揭示了 HER 条件下局域结构的演变，如图 17（b）所示，在不同反应电位下 R 空间中非金属配位峰位置从 1.63 Å移动到 1.56 Å。在开路条件下，Co/PCN 样品中原本的 Co-N\textsubscript{4} 配位变为 2 个 Co-N 配位和 1 个 Co-O 配位，在 HER 电位施加条件下变为 2 个 Co-N 配位和 2 个 Co-O 配位。这种演变归因于电解质中羟基的吸附和在反应过程中水分子的吸附及演化。该工作结合原位 XANES 和 EXAFS 谱图结果发现了羟基物种与 Co-N\textsubscript{4} 位点结合产生高价态的 HO-Co\textsubscript{1}N\textsubscript{2}活性结构，并进一步吸收 H\textsubscript{2}O 分子形成 H\textsubscript{2}O-(HO-Co\textsubscript{1}N\textsubscript{2}) 反应中间态，探明了催化 HER 过程的真实活性结构。
图 17. Co/PCN 催化剂在不同 HER 电位下 Co K 边的 (a) 原位 XANES 谱图和 (b) 原位 EXAFS 谱图 [82]；Ru/NC 催化剂在不同 HER 电位下的 (c) 原位 Ru K 边的 XANES 谱、(d) Ru 的氧化态以及 (e) 对应的原位 EXAFS 谱 [83]。

类似地，作者还深入探究了单原子 Pt 位点在催化 HER 过程中的动力学演化过程，在原子水平上确定了在电催化 HER 条件下单原子位点的原子和电子结构的近自由演变动力学行为 [84]。单个 Pt 原子在反应过程中趋向于从 N-C 底物上动态释放，其几何结构配位数降低，电子性质更接近零价。Pt 金属原子与 N-C 载体底物的相互作用减弱，导致 Pt 接近自由状态，从而在能量上促进了 H2O 在碱性电解质中的吸附，进而优化了 H 的吸附。该研究工作表明了高电子态密度的 5d Pt 位点是催化 HER 真正的活性中心。黄等人 [83] 借助原位 XAFS 实验技术证明了在层状钴酸钠 NaCoO2 载体上分散良好的 Ru 单原子（Ru SAs）是一种极好的碱性 HER 电催化剂。原位 Ru K 边的 XANES 光谱显示 Ru 在 HER 过程中氧化态逐渐降低到约+2.0（图 17 (c-d)）。原位 EXAFS 谱揭示了在 HER 电势的作用下 Ru-O 配位数降低和 Ru-O 键长的增加与 Ru 价态的降低相对应（图 17 (e)）。更重要的是，原位 EXAFS 谱反映了钌的氢氧化物簇中 Ru-O-Ru 配位逐渐消失，出现新的 Ru-Ru 散射路径，表明 Ru 簇的产生（图 17 (e)）。同时，在 HER 过程中 Co 的氧化态和配位环境均没有明显变化，表明 Ru/NC 复合催化剂中 NaCoO2 载体具有优异的结构稳定性。该研究结果表明在 HER 过程中，所制备的 Ru/NC 催化剂中的金属局域结构并不是真正的活性相，Ru 氢氧化物簇易于在反应条件下还原为金属 Ru 簇，与均匀分散的 Ru 单原子位点共同构成 HER 的活性相。
不同反应条件下 Ru NPs/NC-900 催化剂的 (a) Ru K 边原位 XANES 光谱和 (b) 原位 FT-EXAFS 光谱；不同反应条件下 PtRu 单原子合金电催化剂的 (c) Ru K 边和 (d) Pt L3 边的原位 XANES 谱图。

锚定在氮-碳材料上的金属纳米颗粒因为具有可调的电子结构和界面效应而被认为是很有前途的 HER 催化剂。李等人[85]全面研究了负载在氮-碳载体上的贵金属纳米颗粒在催化 HER 过程中的局域结构演变。作者对负载在氮-碳载体上的 Ru 纳米颗粒催化剂（Ru NPs/NC-900）催化 HER 过程进行了原位 XAFS 测试。Ru K 边的原位 XANES 光谱如图 18 (a) 所示，在催化反应过程中，随着施加电位负移，吸收边不断向能量较低的方向移动，表明在 HER 过程中 Ru 物种的氧化态降低。配位构型的演变被原位 EXAFS 分析进一步确定。如图 18 (b) 所示，不同施加电位下的 EXAFS 光谱位于~2.36 Å处的金属配位峰（Ru-Ru）与非原位条件相比有明显的左移和峰强度的变化，这意味着催化 HER 反应过程中金属键长的收缩。此外，姚等人[86]基于 PtRu 单原子合金电催化剂研究了双金属纳米颗粒在催化 HER 条件下的协同作用。图 18 (c) 和 (d) 是一系列反应电位下的 Ru K 边和 Pt L3 边的 XANES 光谱。在 Ru K 边的 XANES 光谱中，开路电压（OCV）下的吸收边轻微向高能方向偏移，代表着 Ru 的氧化态增加，这一现象与反应初始阶段 H2O 或 OH−吸附在 Ru 原子上导致电子离域和表面原子部分重排有关。当 HER 电位施加时，吸收边逐渐移动到低能位置，这意味着水解离后 Ru 氧化态降低。在 Pt L3 边 XANES 光谱中，原位电压条件下振荡峰的宽度变宽，代表着 Pt
原子周围的结构是无序的。上述原位近边结果表明，Pt 和 Ru 在反应过程中同时被还原。Pt 为 H* 吸附位点，Ru 为水分子吸附位点。紧接着作者利用 EXAFS 谱分析了 Pt 和 Ru 的局部结构演变。随着析氢反应电位的施加，Pt-Ru 配位峰逐渐增强，Ru 的 K 边的 EXAFS 光谱也反映出了类似的金属配位峰增强的趋势。定量分析得到反应过程中金属 Pt 和 Ru 的配位数均明显增加，这表明反应过程中 PtRu 的合金化程度增加。该项工作深入揭示了 PtRu 贵金属合金在电催化反应过程中的动态作用机制。

5.2.2 电催化二氧化碳还原反应研究

由可再生能源驱动的电催化二氧化碳还原（CO₂RR）制备具有高附加值的燃料和化学品为缓解能源危机以及实现碳中和目标提供了一种具有吸引力的方式[87-89]。金属铜是能够电化学 CO₂深度还原为多电子产物的一种非常有前景的催化剂。然而，金属铜在反应过程中常常会经历不可控的重构过程，使得一些预先设计的活性位点结构在电化学过程中难以保持。尽管目前也有研究者利用 Cu 的重构性质制备出了一些高性能的重构催化剂(如 OD-Cu)[90, 91]，但在识别其真实催化活性位点、探究构效关系方面仍然面临巨大挑战。陈等人[92]借助同步辐射原位 XAFS 技术透彻研究了 CuSiOₓ 非晶纳米管催化剂中 Cu-O-Si 界面位点在 CO₂RR 过程中的动态作用过程。原位 XANES 谱图结果显示在 CO₂RR 电位范围内，~ 8986 eV 的 Cu(II) 峰保持不变，未出现 Cu(0) 和 Cu(I) 峰，表明 CuSiOₓ 中的活性 Cu 位点在 CO₂RR 过程的不同电位下没有发生明显的 Cu(II) 还原（图 21(a)）。原位 EXAFS 光谱显示（图 21(b)），在~1.5 Å 处的 Cu–O 键保持不变，并且随着阴极电位的降低没有出现金属配位特征峰。结果表明原子级 Cu-O-Si 界面位点中的强金属-载体相互作用使得活性 Cu 组分在较宽的 CO₂RR 电位范围内保持结构稳定和抗重构性。类似地，余等人[93]基于原位 XAFS 技术研究了非典型含氧铜纳米线在电催化 CO₂RR 产 C₂H₄ 电位下的结构演变过程。测试得到的原位 XANES 光谱如图 21(c) 所示，在施加-1.00 V 电位后，催化剂中 B 峰（1s → 4pₓ 跃迁）的强度降低，这可归因于催化剂样品中金属 Cu 被还原。相应的原位 EXAFS 数据显示，在-1.00 V 电势下，催化剂中的 Cu-O 配位峰强度降低，表明氧损失导致 OBC 样品中的 Cu-O 配位数减少（图 21(d)）。该结果揭示了在最佳偏压下，活性结构中的氧会进一步失去，变成氧缺失的含氧铜结构，该结构在电催化 CO₂还原中起着重要作用。除了在 CO₂RR 反应中性能表现优异的金属 Cu 外，张等人[94]也借助原位 XAFS 技术对 Co 基催化剂的电催化 CO₂过程进行了结构演变研究。作者设计了石墨烯外延生长的共轭金属卟啉共价有机骨架作为二维范德华异质结构（Co-u-COF/石墨烯），并用于电催化 CO₂RR。原位 Co K 边 XANES 谱显示 Co 的氧化态在-0.9 V 电压下保持接近+3 价。此外，Co-u-COF/石墨烯在~ 7715.6 eV 的 1s 到 4pₓ 跃迁下的边前峰强度明显增强，并在-0.4 V 电压
后保持不变，这可能与*CO 在活性位点上的吸附有关（图 22 (a))。原位 EXAFS 测试结果~1.47 Å处的配位特征峰基本保持不变，表明活性位点的局域结构在反应过程中保持稳定（图 22 (b))。

图 21. CuSiOx 催化剂在电催化 CO2 RR 过程中 Cu K 边的（a）原位 XANES 光谱的一阶导数和（b）原位 EXAFS 光谱 [92]。OBC 催化剂在 CO2 饱和的 0.5 M KHCO3 溶液中 Cu K 边的（c）原位 XANES 光谱和（d）原位 EXAFS 光谱 [95]。

双金属位点催化剂因能够通过协同调节二氧化碳的活化和中间产物的形成/脱附来克服单一孤立位点的限制，而在电催化 CO2 RR 中有着广泛的应用 [87, 96]。陈等人 [97] 借助原位 XAFS 技术研究了双铜中心促进电催化 CO2 RR 的耦合机制。测试结果显示双铜中心催化剂（Cu Pph）的原位 XANES 曲线几乎相同，表明在 CO2 RR 期间铜的氧化状态没有明显变化（图 22 (c)）。原位 EXAFS 表征中非金属配位峰归因于 Cu-P 和 Cu-O 散射路径的组合贡献，同时未观察到 Cu-Cu 的金属配位峰，表明 CuPPh 催化剂在 CO2 RR 期间局域结构保持稳定，未形成零价的金属 Cu。张新波等人 [98] 采用原位 XAFS 进一步分析了 Ni2NC 中 Ni 双原子位点的结构变化。如图 22 (d) 的 XANES 谱图所示，Ni 的前边缘吸收谱线在 CO2 RR 过程中电子从活性位点转移到反应物和中间体，Ni 的氧化态略有下降但仍然介于 Ni 铬与 NiO 之间，未形成金属 Ni。Ni 的 K 边的原位 EXAFS 谱图显示在不同电位下样品在 ~1.34 Å处的主峰未发现明显变化，说明活性位点结构具有良好稳定性。图 22 (e) 中的近边计算分析显示，在 CO2 RR 过程中 Ni2NC 催化剂会自发吸附 OH 物种，从而形成 Ni2N6-OH 催化中心。该工作借助原位 XAFS 技术全面揭示了双位点中心在电催化 CO2 RR 过程中的电子结构演变及与反应中间体的动态作用过程。
图 22. Co₃-OH-COF/石墨烯催化剂在电催化 CO₂ RR 过程中 Co K 边的 (a) 原位 XANES 光谱和 (b) 原位 EXAFS 光谱[88]; (c) Cu pp 催化剂在 CO₂ RR 的不同电压下 Cu K 边的原位 XANES 光谱[97]; Ni₃NC 催化剂在不同的 CO₂ RR 电位下的 (d) 原位 XANES 光谱，以及 (e) 实验 XANES 光谱与理论光谱的对比图[98]。

5.2.3 电催化氧还原反应研究

氧还原反应（ORR）作为燃料电池中必不可少的阴极反应，在能量转换中起着至关重要的作用。由于 ORR 反应包含多电子转移和质子耦合过程，动力学迟缓，因此提高阴极 ORR 催化剂的催化活性和稳定性成为提升能源装置整体效率的关键[99]。贵金属 Pt 基催化剂是目前公认的性能最佳的 ORR 催化剂[100]。为阐明 Pt 基催化剂的高活性机理，Peter 等人[101]利用原位 XAFS 实验技术探测了金属间化合物 Pt₀.₂Pd₁.₈Ge 催化剂在催化 ORR 过程中金属位点氧化态的变化。不同电位下的 Pd K 边的 XANES 光谱如图 19（a）所示，Pt₀.₂Pd₁.₈Ge 催化剂中 Pd 的氧化态在反应过程中明显增加，表明反应过程中电荷从 Pd 原子向 O₂ 分子的转移。对于原位扩展边结果的定量分析显示 Pd-Pd 键随着还原电位的增加而减小，尤其在 ORR 的动力学区，键长的缩短更为明显（图 19（b））。该工作表明 Pt 单位点修饰后的金属 Pd 在反应过程中的这一变化能够促进 O₂、H₂O 和 OH 物种的吸附，从而提高反应动力学。
图 19. Pt₀₂Pd₁₈Ge 催化剂在 ORR 不同反应电位下 Pd K 边的（a）原位 XANES 谱图和（b）原位 EXAFS 谱图[101]；双原子位点催化剂在 ORR 不同反应电位下（c）Pt L₃边原位 EXAFS 谱图，（d）原子结构图和（e）Fe K 边原位 EXAFS 谱图[102]。

金属原子级分散电催化剂凭借能最大限度的提高金属利用率、降低成本等优势成为近年来电催化 ORR 领域的热点研究材料。同时，金属原子级分散催化剂活性位点均一、结构明确的特点，为反应微观机制的研究提供了理想的结构模型[103]。刘等人[102]利用固-液相的原位 XAFS 技术表征了 Pt 基双原子活性位对于 ORR 反应路径的动态调节作用。原位 XAFS 表征表明了在反应过程中金属 Pt 和 Fe 位点发生了相似地局域配位结构的变化（图 19（c-e））。Pt L₃ 边以及 Fe K 边的原位 EXAFS 谱图定量分析揭示了在 1.05 V 电压下，Pt-N₄ 位点上存在着由含氧物种吸附引起的 Pt-O 配位（图 19（c））。类似地，当施加电压减小到 0.95 V 时，Fe-N₄ 位点上开始出现 Fe-O 配位（图 19(e））。此外，Pt L₃ 边和 Fe K 边 EXAFS 曲线中 Pt-Fe 配位键长在反应过程中有收缩的趋势，这有利于 Pt=N₂=Fe 双位点上含氧中间体的共吸附（图 19（d））。结合原位同步辐射红外对反应中间体的表征结果可以揭示在反应过程中氧分子共吸附在具有适当间距的 Pt 和 Fe 原子上（Pt-O-O-Fe），促进了*O-O*自由基的产生并直接裂解。该项研究揭示了双位点中相邻的两个金属原子对反应中间体的共吸附作用可以为 O-O 键断裂提供牵引力，从而主导氧还原反应路径绕过*O₂→*OOH 步骤，实现快速四电子 ORR 过程。
为降低催化剂成本，多种不同活性结构的非贵金属催化剂对于电催化 ORR 的促进作用被广泛研究。Abruña 等人[48]在康奈尔高能同步辐射光源 (CHESS) 的 F-3 光束线上探究了 Co-Mn 氧化物 (Co$_{1.5}$Mn$_{1.5}$O$_4$/C) 电催化剂在催化氧还原反应 (ORR) 过程中金属间的协同作用。图 20（a）中 Mn K 边的原位 XANES 光谱显示，当施加电位从 1.15 降至 0.4 V 时，6553 eV 左右的峰值强度逐渐增加，并且向低能量方向有小的偏移，这表明在更负的电位下，Mn 的价态更低。金属 Mn 在反应过程中平均价态的降低表明 Mn 可以作为催化 ORR 的活性位点。类似地，Co K 边的原位 XANES 光谱也显示出有规律的变化（图 20（b））。当施加电位从 1.15 降至 0.4 V 时，7722.5 eV 附近的峰值强度体现出微弱的增加并向低能方向移动，表明 Co 在反应过程中价态降低。由于反应的进行 Co 的价态变化与 Mn 同时发生，表明 Co$_{1.5}$Mn$_{1.5}$O$_4$/C 催化剂中 Co 和 Mn 可以作为催化 ORR 的共同活性位点。催化反应过程中金属的价态变化规律也被陈等人在 Mn 基单原子催化剂（Mn-N4-Cx SACs）中观察到[104]。该工作中分散良好的 Mn-N4 催化位点被锚定在硫修饰的碳载体上。作者通过原位 XAFS 实验技术观察到催化剂在 ORR 过程中会形成 Mn-N 键，表明 Mn-N 键键长拉伸的低价 Mn-N4 活性中心，有助于氧相关物种的形成和演化，使得 Mn-N4-Cx SACs 具有较高的 ORR 活性。

图 20. 一系列氧还原施加电位下（a）Mn K 边和（b）Co K 边的原位 XANES 光谱[61]。

随着对电催化反应过程研究的不断深入，多种同步辐射技术联用逐渐成为打破单一技术的局限性，全面解析电化学催化机理的有效手段[105]。例如，具有分子指纹功能的同步辐射傅里叶变换红外 (SR-FTIR) 光谱技术，是识别催化剂表面吸附物种，并实时探测电催化过程中电极表面活性中间体演变的有力工具[106, 107]。刘等人[108]通过结合原位 XAFS 和 SR-FTIR 技术，明确了在实际 ORR 工作条件下 Ni 基单原子催化剂（Ni1-N4-Cx SACs）上孤立 Ni 位点的动态演化，并与表面中间体的演化相关联，深入剖析了 ORR 过程中固-液界面电催化动力学过程。如图 21（a）所示，原位 XAFS 测量结果表明反应过程中催化剂表面单原子 Ni 倾向于从氮-碳载体中动态释放，形成一个接近自由态的活性位点 (Ni$_{1}^{2-4\cdot}N_{2}^{+}$)。紧接着通过原位 SR-FTIR 测量反应过程中生成的中间体（图 21（b）、（c）），近自
由态的单原子 Ni 活性位点有助于 O₂ 吸附并活化为双电层中的关键中间体 *O₂，从而实现高效的 ORR 活性。近年来，原位谱学与成像相结合的研究也受到关注，同步辐射的布拉格相干衍射成像（BCDI）技术可以在纳米级空间分辨率和皮秒级时间分辨率下获得孤立纳米粒子的电子密度、晶格应变和位移场的三维图像[109]。Richard 等人[110]采用 BCDI 技术研究了单个 Pt 纳米颗粒（Pt NPs）在电催化 ORR 过程中电位依赖性的应变演化（图 21（d））。图 21（e）所示的三维应变图像结果表明吸附物诱导的应变在高配位和弱配位的表面原子之间分布不均匀，且随着双层区电极电位的增加（0.26 V ≤ E ≤ 0.56 V），Pt NPs 的压缩应变从表面传播到体相中，ORR 速率相较于 Pt（111）提高约 0.1-0.15 eV。该研究结果不仅为电化学反应机制的揭示提供了有益见解，而且在研究纳米催化剂的实验方法方面也取得了重要进展。将原位 BCDI 与 XAFS 相结合，从原子局部结构演变和材料微观结构应变两方面深入揭示电催化活性起源将成为能源催化领域的重要研究方向之一。

图 21. Ni₁₋₃ NC SACs 催化剂在不同氧还原电位下（a）Ni K 边的 EXAFS 谱图以及（b）原位 SRIR 测试结果[108]；（d）单个 Pt NPs 上应变分布成像实验装置（包括原位 BCDI 流动池、X 射线束和二维探测器的示意图及 Pt NPs 的视图）；（e）不同电极电位下 Pt NPs 表面应变的演化[110]。

6. 总结与展望
综上所述，本文从 XAFS 的基本原理、在能源催化研究领域的应用进行了综述，深入讨论了原位 XAFS 技术在揭示原子动态结构变化的作用。随着第四代同步辐射光源和更先进的 XAFS 光束线的不断涌现，基础科学领域的探索迎来了前所未有的契机，XAFS 的应用范围和研究深度也无疑将进一步扩大。例如，随着
快速连续测量时间分辨 XAFS 技术达到微秒和纳秒时间量级，对合成纳米材料的初期形成过程进行动态结构变化的跟踪观测，能更有效地测量能源催化反应的动力学过程同时获得更短时间尺度的动力学结构信息。在未来的科学研究中，使用多种先进的原位同步辐射技术联合开展研究将会弥补单一表征方式存在的局限性。多种先进技术表征所获得的信息能够实现优势互补，全面和真实地了解所研究的科学问题，使得 XAFS 技术的原位化学测量在能源催化等相关领域的应用研究进入一个新的阶段。

致谢

本工作得到了国家自然科学基金（12135012 和 12205300，12075243）、国家重点研发计划项目（2021YFA1500403）、中国科学院合肥科学中心研发重点项目（2022HSC-KPRD003）、安徽省自然科学基金（2208085J01 和 2208085QA28）资助。感谢合肥、北京及上海同步辐射光源提供的机时和技术支持。
参考文献

39. F. W. Lytle, P.S.P.W., R. B. Greegor, et al., Effect of chemical environment on magnitude of x-ray absorption resonance at LIII edges. Studies on metallic elements, compounds, and...

56. Spezzati, G., et al., *Atomically dispersed Pd-O species on CeO(2)(111) as highly active sites*.

