In case of aperture/focus values we correctly find “8-inch” or “10-foot”, but also “2 inch”, “10 foot” or even “6-inch” (there are more than 60 cases). Other units are also problematic, some are missing, others incorrect: “4.5 Cooke refractor”, “77-cm (30-) Nice Observatory”, “5.1 reflector”, “−19C” [−19°C], we also see “degree C”), “48 ° F” [48°F], “between − 30” and the South Pole” [−30°]. There is no unique capitalization: “xi Persei” and “Xi Persei”. Often a full-stop is missing: “Washington D.C.”, “[Admiral W. H] Smyth”, “J. H Schröter” or “H.C Vogel” (abbreviated first names appear with/without capitalization: “xi Persei” and “Xi Persei”). Even on pages 424–426 we find the author’s calculation of the masses in a binary system according to Newtonian mechanics. Alas, the presented formulae have nothing to do with the standard scientific notation. First, symbols are confusing: the labels of the stars, M and N in Figure 27.5, stand also for their masses. They should be designated, as usual, by \(m_1 \) and \(m_2 \). However, indices are not used: \(V_m \), \(V_n \) and \(F_m \), \(F_n \) denote the stars orbital velocities \((v_1, v_2) \) and centrifugal forces, usually \(v_1, v_2 \) and \(F_1, F_2 \), respectively. The distances to the centre of gravity are \(y \) and \(x \) (note the reversed sequence; moreover, \(x \) appears also in italics: \(x_i \)); usually \(r_1, r_2 \). This strange notation leads to cryptic formulae, like \(F_n = NVn^2/x \), \(M + N = [(a^2/p^2)]^2/p^2 \) or \(N/M = 10/20 = \% (p \text{ is the period, usually } T). \) This is hard work for the common reader. The professional version of the first formula is \(F_2 = m_2v_2^2/r_2 \).

This looks like I’m pretty pedantic. But I checked the book very carefully and even seemingly small things are important. Some cases are certainly a matter of opinion, but ultimately there are too many for such a voluminous and demanding academic book. The reader can expect a flawless and consistent presentation. This is all the more true since the publisher is aiming more at a specialist audience, i.e. academics and scientists (hence the high price). The positive response from some amateurs who spend their scarce money on it shows that they are impressed by the amount of historical and astronomical information. However, as we have seen, a closer look may reveal a very different picture. It is not enough to simply collect as many details as possible. This poses the risk of errors creeping in, and English should have been more thorough. For example, regarding deep sky objects and their visual observers (particularly the Herschels), he should have consulted the reviewer’s books and numerous published papers well as the historical and modern object data available on the Internet.

This review should not be construed as a personal attack, but as an astronomical historian with a PhD in astrophysics, and a long-time visual observer, I have tried to present things as objectively as possible. But even with good will we cannot get past the book’s many shortcomings. The author’s own preferences ultimately lead to an incomplete and sometimes distorted picture of the promised topic: “Visual Observation”. The book Chronicling the Golden Age of Astronomy is far from perfect and should be read with caution!

Dr Wolfgang Steinicke, FRAS
University of Southern Queensland
Gottenheimerstrasse 18, 79224 Umkirch,
Germany
E-mail: steinicke@klima-luft.de

Going back in history, tables of astronomical data have been published. There have been many almanacs based on planetary theories and ephemerides. There have also been tables of data published in scientific papers. The source of the data in these almanacs and tables and their accuracy are in many cases uncertain. The tables of data present a challenge to historians. A large effort has been made in identifying the sources and accuracies of ephemerides and almanacs from the Roman, Greek, Egyptian, and Babylonian cultures. The history of these efforts is presented in the introduction of this book, giving many references to the resulting publications.

This book seeks to move forward and discuss the power of digital tools to edit the process and analyze astronomical tables. The first step in this process is the collection and consideration of the issues in the editing
process and the process of technical analysis. The collection of papers in this volume indicates the range and scope of scholars involved in the current efforts, with a strong coverage of the Eurasian continent and North Africa. The papers include investigations of tables in Sanskrit, Chinese, Latin, Hebrew, and Islamicate cultures, both from scientific and monastic contexts, and the astronomical, mathematical, and geographical branches. Thus, the book widely expands the cultural coverage of these investigations, in addition to giving great detail in the methods of the analysis.

The papers are organized in four sections. In the first section they concern the state-of-the-art approaches to cracking tables and the derivation of different types of historical conclusions. These papers cover the tools of table crackers, examples of an almanac, and the copying and computing of tables in the late medieval monasteries. The determination of the computation and accuracies of sine and tangent tables are discussed. The second group of tables focus on the relations between the critical editing of tables and their analysis. Sanskrit astronomical tables are studied and discussed in this section.

The third section shares a common concern with computational practices in the astronomical tables. This is illustrated by tables of sunrise and sunset in China, tables of planetary latitudes, equation tables, and a paper on the cracking of Tabulae permanentes. The last section explores new paths and approaches to table analysis. The papers in this section include computing of manuscripts of time between mean and true syzygies, reverse engineering applied to ephemerides, and tackling a thirteenth century Arabic source with the aid of a computer database.

The book includes extensive coverage of research in the specific cultures being specialized in this book. It also includes a very large number of references to related research. There are many tables of data being used as examples, as well as 16 plates of pictures of tables of data.

There are times in the book where it appears that the chapters have been written for people who are currently working in the field being covered by the chapter and our experts on the subject. Such chapters are not written for scientists who are not familiar with the specific subject. There are cases where the paper does not give definitions and assumes the reader is familiar with the definitions. Examples are "... new information table cracking offers ..." on page 20. What is the new information? The number format of "0;59,8,19,36 degrees per day", starting on page 25, is not defined. There are many Hebrew texts referenced without information on page 53.

For anyone studying the history of astronomical tables, this book provides a valuable source of information in cultures beyond the Western cultures that have been most widely covered. The book is an extremely valuable source of references and information, particularly on the cultures of the Eurasian continent and North Africa.

Dr P. Kenneth Seidelmann
University of Virginia, 9203 Wescott Place
Unit A, Rockville, Maryland 20850, USA.
E-mail: Pks6n@virginia.edu

The never-ending fascination with Ptolemy (100–170) is the subject of this book on how his astronomical and astrological writings were translated and understood in the Middle Ages. However, there is a larger animating principal involved, as this is just the first in a series of books planned in a 25-year project titled Ptolemaeus Arabus et Latinus (PAL). Established at the Bayerische Akademie der