低剂量辐射诱发人体淋巴细胞微核的剂量效应关系研究

王知权 唐卫生 陈振军 王玉书
(中国医学科学院放射医学研究所，天津300192)

摘要 用50 h、72 h常规培养法和胞质分裂阻断微核(CBMN)法，比较低剂量照射人体血淋巴细胞微核所诱发的微核率和微核细胞率。结果表明，微核率和微核细胞率均随剂量增加而增加，50 h培养和CBMN的剂量效应关系呈直线模式，而72 h培养则呈二次式；CBMN比常规培养(50 h和72 h培养)更敏感和准确，离体照射0.1 Gy微核率和微核细胞率即明显检出。

关键词 低剂量辐射，人体淋巴细胞，CB微核，剂量效应关系

染色体畸变分析是对电离辐射和环境物质诱发剂监测的一种主要手段。特别在低剂量辐射条件下，仍不失为最灵敏的指标之一。但该指标要求有熟练的操作技术，有经验的阅片经历，更重要的缺点是耗时相当多。而人们认识到微核来源于染色体断片或整条染色体，为此，用微核计数可作为监测染色体损伤的一种遗传学方法 Fenech和Morley建立胞质分裂阻断微核法(Cytokinesis-block micronucleus method CBMN)法以来，更显示出巨大的潜力，尤其是在低剂量照射条件下。

本文用相同个体，在低剂量照射条件下，使用不同监测方法，对诱发微核率进行比较。

1 材料和方法

全血样品选自5个不吸烟的健康献血员，男3人女2人，年龄20—27岁。将血样分为3组，每组等分5分，除1分作对照外，其余4分在室温下用^{137}Cs γ源(GAMMA-CELL 40 加拿大产)剂量率为1.167 Gy/min分别照射0.1、0.2、0.4和0.8 Gy。照射后放置2 h左右，从每份血样中取0.25 ml接种在含有1.5 ml RPMI 1640 (Gibco)、0.5 ml小牛血清和适量PHA的培养基(pH = 7.2)中，恒温37℃培养。第1组样品于50 h收获细胞，第2组样品于72 h收获细胞，第3组样品培养到44 h时加入终浓度6 μg/ml的细胞松弛素B，继续培养28 h收获细胞。用0.10 mol/L KCl低渗，甲醇、冰醋酸固定，Giemsa染色，在未加剂量情况下，1000×油镜下镜检。在50 h和72 h培养时，对每个剂量点分析2000个转化、胞浆丰满的淋巴细胞，CBMN法计数1000个双核细胞，记录有微核的细胞。微核的判定标准是：微核为主核大小的1/3以下，微核与主核间分离或相切(但彼此间核膜清楚可见)，相压或重叠均不计。

2 结果

实验共分析100000个转化的淋巴细胞和25000个CB双核细胞，图1，2分别显示含有一个或二个微核的CB双核细胞。各剂量点计数的淋巴细胞数、微核率和微核细胞率见表1。

从表1可知，不管是常规50 h、72 h培养法和CBMN法，其微核率和微核细胞率可见到随

收稿日期：1991-07-01

(C)1994-2023 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net
Fig 1. A photomicrograph of binucleated CB cell carrying a MN Magnification 1000

<table>
<thead>
<tr>
<th>Dose/Gy</th>
<th>Culture time 50 h</th>
<th>Culture time 72 h</th>
<th>CBMN Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cells</td>
<td>MNF %</td>
<td>CMNF %</td>
<td>Number of cells</td>
</tr>
<tr>
<td>0</td>
<td>10000</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>0.1</td>
<td>10000</td>
<td>2.3</td>
<td>2.2</td>
</tr>
<tr>
<td>0.2</td>
<td>10000</td>
<td>3.6</td>
<td>3.6</td>
</tr>
<tr>
<td>0.4</td>
<td>10000</td>
<td>5.9</td>
<td>5.5</td>
</tr>
<tr>
<td>0.8</td>
<td>10000</td>
<td>9.6</td>
<td>9.4</td>
</tr>
</tbody>
</table>

MNF—micronucleus frequencies CMNF—cells with micronucleus frequency
剂量的增加而增加，所不同的只是增长斜率不同，50 h 培养增长斜率平缓，72 h 培养增长趋势较快，而 CBMN 法增长速度最快。在同一方法中，均可见到微核率和微核细胞率 两者的增长趋势一致 性。

图 3 和图 4 是根据表 1 数据拟合的方程图。

为了观察淋巴细胞处于第一周期中的微核，50 h 培养和 CBMN 法，不管是对微核率或微核细胞率来说，均为线性方程，所不同的只是斜率不同，而 72 h 培养则 显示为纯二次式的剂量效应关系。

表 2 显示出低剂量电离辐射诱发淋巴细胞中微核细胞率和分布情况，随着剂量的增加，含多个微核的细胞数也增加，尤其以 CBMN 法中含 1 个以上微核的细胞数 增长的速度快，同时含多个微核的细胞也多。

<table>
<thead>
<tr>
<th>Method</th>
<th>Dose /Gy</th>
<th>Number of cells</th>
<th>Cells with MN Number</th>
<th>MN distribution/cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culture time 50 h</td>
<td>0</td>
<td>10000</td>
<td>11</td>
<td>1.1</td>
</tr>
<tr>
<td>0.1</td>
<td>10000</td>
<td>22</td>
<td>2.2</td>
<td>21</td>
</tr>
<tr>
<td>0.2</td>
<td>10000</td>
<td>36</td>
<td>3.6</td>
<td>36</td>
</tr>
<tr>
<td>0.4</td>
<td>10000</td>
<td>55</td>
<td>5.5</td>
<td>51</td>
</tr>
<tr>
<td>0.8</td>
<td>10000</td>
<td>94</td>
<td>9.4</td>
<td>92</td>
</tr>
<tr>
<td>Culture time 72 h</td>
<td>0</td>
<td>10000</td>
<td>17</td>
<td>1.7</td>
</tr>
<tr>
<td>0.1</td>
<td>10000</td>
<td>29</td>
<td>2.9</td>
<td>29</td>
</tr>
<tr>
<td>0.2</td>
<td>10000</td>
<td>43</td>
<td>4.3</td>
<td>42</td>
</tr>
<tr>
<td>0.4</td>
<td>10000</td>
<td>49</td>
<td>4.9</td>
<td>49</td>
</tr>
<tr>
<td>0.8</td>
<td>10000</td>
<td>148</td>
<td>14.8</td>
<td>139</td>
</tr>
<tr>
<td>CBMN</td>
<td>0</td>
<td>5000</td>
<td>27</td>
<td>5.4</td>
</tr>
<tr>
<td>0.1</td>
<td>5000</td>
<td>58</td>
<td>11.6</td>
<td>55</td>
</tr>
<tr>
<td>0.2</td>
<td>5000</td>
<td>75</td>
<td>15.0</td>
<td>67</td>
</tr>
<tr>
<td>0.4</td>
<td>5000</td>
<td>121</td>
<td>24.2</td>
<td>103</td>
</tr>
<tr>
<td>0.8</td>
<td>5000</td>
<td>233</td>
<td>46.8</td>
<td>209</td>
</tr>
</tbody>
</table>

3 讨 论

胞质分裂阻断微核法是由 Fenech 和 Motley[1]创立的，其优点是细胞变大，计数的只是第一次分裂后存在于双核细胞中的微核，因此易于辨认、精确，同时检出率也高。实验结果表明，CBMN 法 0.1 Gy 照射时微核率和微核细胞率即可明显被检出（U 值分别为 3.64 和 3.38，P 值均 <0.01）。而常规培养微核 50 h 和 72 h 培养，0.1 Gy 照射时的微核与其本底值相比则无明显差异，表明 CBMN 法比常规的 50 h 和 72 h 培养法更为灵敏。与文献[2]和文献[3]分别报道的 0.05 和 0.1 Gy 可检出结果相吻合。

CBMN 法与染色体畸变分析相比，优越性在于操作简单，异常细胞易于分辨，计数一定数量的双核细胞只需 0.5—1 h。而分析染色体畸变，尤其在低剂量区段，由于畸变率很低，得到统计学上有明显意义的结果，必须增大分析的细胞数，从数百个乃至数千个，这无疑大大提高
THE STUDY ON DOSE–RESPONSE RELATIONSHIP OF MICRONUCLEI IN HUMAN LYMPHOCYTES INDUCED BY LOW DOSE RADIATION

Wang Zhiquan Tang Weisheng Chen Zhenjun Wang Yushu

(Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Tianjin 300192)

ABSTRACT Comparative studies on frequencies of micronucleus (MN) and cells with MN from human blood lymphocytes in vitro which exposed to low dose radiation were carried out using conventional methods for culture time 50 h and 72 h and cytokinesis-block micronucleus method (CBMN). The experiment results showed that the frequencies of MN and cells with MN increased with dose. Dose–response relationship for conventional method of culture time 50 h and CBMN method were linear model, while culture time 72 h was quadratic ones: CBMN method is more sensitive and precise than conventional 2 methods. The frequencies of MN and cells with MN could be unequivocally detected if the blood was exposed to 0.1 Gy of 137Cs γ-rays in vitro.

KEYWORDS Low dose radiation, Human lymphocytes, CBMN, Dose–response relationship