计算复杂穆斯堡尔谱的一种方法
——含有修正因子的高斯-牛顿法

蔡 瑞 英
(南京化工学院)

一、引 言

穆斯堡尔谱学是近代进行物质微观结构分析的重要方法之一。在穆斯堡尔谱学的研究中，慎重地选择计算方法，并通过电子计算机用合适的程序拟合谱线，找出谱中各峰的位置、强度和宽度等参数值，是一项重要的工作。

目前拟合穆斯堡尔谱最常用的是高斯-牛顿法。它对一些简单而分辨较好的谱线计算是有效的；但对分裂小、分辨较差的复杂谱线，拟合计算就困难了。我们在工作中，针对这些问题，通过实践总结出一个能拟合复杂穆斯堡尔谱的方法和电子计算机的计算程序。本文介绍这一方法和其应用实例。

二、高斯-牛顿法及其存在的困难

高斯-牛顿法解穆斯堡尔谱的基本思想是，假定穆斯堡尔谱可分解成简单的劳伦兹型曲线的叠加，然后用最小二乘法拟合。

设测得的穆斯堡尔谱有 \(n \) 个劳伦兹峰，则其理论谱线应是：

\[
F(x, \cdots t_i, u_i, p_i, \cdots) = g(x) - \sum_{i=1}^{n} \frac{u_i}{1 + \left(\frac{x - t_i}{p_i} \right)^2},
\]

式中 \(t_i, u_i, p_i \) 分别为各峰的位置、强度和半宽度；\(g(x) \) 是背景函数，它与谱仪及测试手段有关。为讨论简便，不妨假设 \(g(x) \) 是一个常数 \(b \)。

若测得谱的第 \(x_j \) 处上的计数为 \(y_j \)，令

\[
\mathbf{q} = (b, t_1, u_1, p_1, \cdots, t_m, u_m, p_m)^T;
\]

\[
X^2 = \sum_{j=1}^{m} [y_j - F(x, \mathbf{q})]^2 w_j,
\]

这里 \(m \) 是测量数，\(w_j \) 是计数 \(y_j \) 的权数。取 \(w_j = \frac{1}{y_j} \)。参数 \(\mathbf{q} \) 可经下述步骤求得。

(1) 由 \(X^2 \) 为最小，得非线性方程组：

本文 1981 年 10 月 15 日收到。

第 7 期 科 学 通 报 441
\[\sum_{j=1}^{n} \frac{1}{y_j} [y_j - F(x_j, \mathbf{q})] \frac{\partial F(x_j, \mathbf{q})}{\partial q_i} = 0, \quad (i = 1, 2, \ldots, N; \quad N = 3n + 1) \tag{2} \]

（II）取初始值 \(\mathbf{q}_0 \). 记 \(\mathbf{q} = \mathbf{q}_0 + \Delta \mathbf{q} \). 对 \(F(x_j, \mathbf{q}) \) 用泰勒级数在 \(\mathbf{q}_0 \) 展开，取一次近似式得
\[F(x_j, \mathbf{q}) = F(x_j, \mathbf{q}_0) + \sum_{k=1}^{N} \frac{\partial F}{\partial q_k} \Delta q_k, \tag{3} \]
式中 \(N = 3n + 1; \quad F_j = F(x_j, \mathbf{q}_0) \). 将 (3) 式代入 (2) 式，并适当替换下标，得线性方程组:
\[\sum_{j=1}^{N} \Delta q_j \sum_{k=1}^{m} \frac{1}{y_k} \frac{\partial F_k}{\partial q_i} \frac{\partial F_k}{\partial q_j} = \sum_{k=1}^{m} \frac{1}{y_k} [y_k - F(x_k, \mathbf{q}_0)] \frac{\partial F_k}{\partial q_i}, \quad (i = 1, 2, \ldots, N) \]
令
\[a_{ij} = \sum_{k=1}^{m} \frac{1}{y_k} \frac{\partial F_k}{\partial q_i} \frac{\partial F_k}{\partial q_j}, \quad d_i = \sum_{k=1}^{m} \frac{y_k - F_k}{y_k} \frac{\partial F_k}{\partial q_i}, \]
得上述线性方程组的矩阵形式
\[A \Delta \mathbf{q} = \mathbf{D}, \tag{4} \]

（III）解方程组 (4) 得 \(\Delta \mathbf{q} \)，用以修正 \(\mathbf{q}_0 \)，即 \(\mathbf{q} = \mathbf{q}_0 + \Delta \mathbf{q} \) 或 \(\mathbf{q} = \mathbf{q}_0 + k_0 \Delta \mathbf{q} \) （\(k_0 \)——最佳步长因子），将得到的 \(\mathbf{q}_1 \) 作为新的初始值，重复 (I)、(II) 计算步骤，直到 \(\chi^2 \) 的值适中要求为止。

这就是高斯-牛顿法。它每次迭代都要解一个 \(A \Delta \mathbf{q} = \mathbf{D} \) 的线性方程组，但是当被测谱线较复杂时，这个方程组往往会显示出病态，这对谱图分析造成困难。而事实上，只要谱线是真正能分解的，它的参数值应该是存在的；也就是方程组 (2) 应该具有解。但由非线性方程组 (2) 变换成线性方程组 (4) 时却出现病态，这表明方程组线性化中有不可行的因素存在。可见，改善方程的线性化计算是解决这个困难的一个途径，由此得到了下述拟合复杂谱线的方法。

三、含修正因子的高斯-牛顿法

大家知道泰勒展开的一次近似式，其近似程度取决于自变量增量 \(\Delta q_i \) 的大小。若 \(|\Delta q_i| \) 较大，则 \(\Delta q_i \) 的二次项及二次以上项就不能忽略，否则其展开式的一次近似式就较差，以致失真。若 \(|\Delta q_i| \) 虽不大，但和 \(\frac{\partial F_k}{\partial q_i} \) 相比，相对值却很大，此时被忽略的二次项及二次以上项的值，就会使方程组 (4) 的系数矩阵中元素关系发生变化，出现病态。这在拟合谱线时，当初始值选定得不好或谱线较复杂时，这些情况是容易出现的。

为此，我们在泰勒展开式中不仅是取一次近似式，而是在近似式 (3) 中加一修正项 \(\alpha_i \):
\[F(x_j, \mathbf{q}) = F(x_j, \mathbf{q}_0) + \sum_{k=1}^{N} \frac{\partial F}{\partial q_k} \Delta q_k + \alpha_i, \tag{3'} \]
\(\alpha_i \) 用来补偿被断开的误差。它的值显然和 \(\Delta q_i, F_i \) 的二阶及二阶以上的导数值有关。实际上
\[\alpha_i = \frac{1}{2} \langle \Delta q_i, H_0 \Delta q_i \rangle + \cdots, \tag{5} \]

其中
\[H_0 = \begin{pmatrix} \frac{\partial F_i}{\partial q_1} \frac{\partial F_i}{\partial q_1} & \ldots & \frac{\partial F_i}{\partial q_N} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_i}{\partial q_N} & \frac{\partial F_i}{\partial q_N} & \frac{\partial F_i}{\partial q_N} \end{pmatrix}, \]
取
\[\alpha_i = \alpha_1 \Delta q_1 + \alpha_2 \Delta q_2 + \cdots + \alpha_N \Delta q_N = \sum_{i=1}^{N} \alpha_i \Delta q_i, \tag{6} \]
将 (3') 代入 (2) 式，并替换下标，同时令
\[\sum_{k=1}^{m} \alpha_{ik} \frac{\partial F_k}{\partial q_i} = C_{ij}, \quad (i, j = 1, 2, \cdots, N), \]
得新的线性方程组的矩阵形式
\[(A + C) \Delta q = D, \]
\[C = (C_{ij}). \]

式中
方程组 (4') 可看作是 (4) 式中的系数矩阵加上一个 C 矩阵，这样得到的方程组 (4') 应该比方程组 (4) 更接近方程组 (2)。因此可以设想，只要修正项 \(\alpha_i \) 取得合适，方程组 (4') 总可以解出一组符合要求的参数值。问题是怎样选取修正项 \(\alpha_i \)，也就是如何确定矩阵 \(C \)。由式 (5)、(6) 知：
\[\alpha_{ki} = \sum_{r} \frac{\partial F_{ij}}{\partial q_{ir}} \Delta q_{ir}, \]
令
\[W_i = 1 + \left(\frac{x_i - t_i}{p_i} \right)^2, \]
对于
\[l = 1, 2, \cdots, n \] 有：
\[\frac{\partial F_i}{\partial q_{3l-1} \partial q_{3l-1}} = -\frac{6u_i}{p_i^2 W_i^2} \left(1 - \frac{4}{3W_i} \right), \]
\[\frac{\partial F_i}{\partial q_{3l-1} \partial q_{3l}} = -\frac{2}{p_i W_i} \left(x_i - t_i \right) p_i = \frac{1}{u_i} \frac{\partial F_i}{\partial q_{3l-1}}; \]
\[\frac{\partial F_i}{\partial q_{3l+1} \partial q_{3l+1}} = -\frac{4u_i}{p_i^2 W_i^2} \left(x_i - t_i \right) W_i = \frac{2}{p_i} \left(1 - \frac{2}{W_i} \right) \frac{\partial F_i}{\partial q_{3l-1}}; \]
\[\frac{\partial F_i}{\partial q_{3l} \partial q_{3l+1}} = 0, \quad (k = 1, 2, \cdots, N; \text{且} k \neq 3l - 1, 3l, 3l + 1). \]
故
\[\alpha_{3l-1, j} = -\frac{6u_i}{p_i^2 W_i^2} \left(1 - \frac{4}{3W_i} \right) \Delta t_i + \frac{1}{u_i} \frac{\partial F_i}{\partial q_{3l-1}} \Delta u_i + \frac{2}{p_i} \left(1 - \frac{2}{W_i} \right) \frac{\partial F_i}{\partial q_{3l-1}} \Delta p_i \]
\[= -\frac{6u_i}{p_i^2 W_i^2} \left(1 - \frac{4}{3W_i} \right) \Delta t_i + \left[\frac{\Delta u_i}{u_i} + \frac{2\Delta p_i}{p_i} \left(1 - \frac{2}{W_i} \right) \right] \frac{\partial F_i}{\partial q_{3l-1}}, \]
因而
\[\alpha_{3l-1, k} = \sum_{i=1}^{m} \frac{1}{y_i^2} \frac{\partial F_i}{\partial q_k}, \]
\[= -\frac{6u_i \Delta t_i}{p_i^2} \sum_{i=1}^{m} \frac{\left(1 - \frac{4}{3W_i} \right) \partial F_i}{\partial q_k} + \sum_{i=1}^{m} \left[\frac{\Delta u_i}{u_i} - \frac{2\Delta p_i}{p_i} \left(1 - \frac{2}{W_i} \right) \right] \frac{\partial F_i}{\partial q_k}. \]
记
\[C_{3l-1, k} = \beta_{3l-1, k} + \gamma_{3l-1, k} \theta_{3l-1, k}, \]
显然
\[-1 < | - \frac{2}{W_i} | < 1; \quad -1 < 1 - \frac{4}{3W_i} < 1, \]
因此
\[| \beta_{3l-1, k} | \leq \frac{6u_i}{p_i^2} \left| \sum_{i=1}^{m} \left(\frac{1}{y_i} \frac{\partial F_i}{\partial q_k} \right) \right|, \]
\[| \gamma_{3l-1, k} | \leq \left| \frac{\Delta u_i}{u_i} \right| \left| \frac{2\Delta p_i}{p_i} \right|. \]

第 7 期 科学通报 443
用类似的方法可得

\[
C_{\beta_{i},j} = \beta_{i}a_{i} \leq \frac{2\Delta t_{i}}{p_{i}} \sum_{j=1}^{m} \left[-\frac{1}{y_{j}} \frac{1}{w_{j}^{2}} \left(\frac{x_{j} - t_{i}}{p_{i}} \right) \frac{\partial F_{j}}{\partial q_{k}} \right],
\]

\[
|\gamma_{\beta_{i},j}| \leq \frac{4|\Delta p_{i}|}{p_{i}},
\]

以及

\[
C_{\beta_{i+1},j} = \beta_{i+1}a_{i+1} \leq \frac{4u_{i}|\Delta t_{i}|}{p_{i}^{2}} \sum_{j=1}^{m} \left[-\frac{1}{y_{j}} \frac{1}{w_{j}^{2}} \left(\frac{x_{j} - t_{i}}{p_{i}} \right) \frac{\partial F_{j}}{\partial q_{k}} \right],
\]

\[
|\gamma_{\beta_{i+1},j}| \leq \frac{|\Delta u_{i}|}{u_{i}} + \frac{3|\Delta p_{i}|}{p_{i}},
\]

因此，一般可设

\[
C_{ij} = \beta_{ij} + \gamma_{ij}a_{ij} \quad (i, j = 1, 2, \cdots N),
\]

式中 β_{ij}, γ_{ij} 项称之为修正因子，将（8）代入（4') 式得到的线性方程组仍会改善其收敛性。

这样，经过上述改进，我们得到含修正因子的高斯-牛顿法，这个方法的特点是每次迭代需要取修正因子 β_{ij}, γ_{ij}, 这可用式（7-1）、（7-2）、（7-3）估计。可以证明，一般情况下，$|\beta_{ij}|$ 和 $|\gamma_{ij}|$ 二者都不大于 6，在实际计算时，可根据具体谱线，酌情选取。特别的是：

当取 $\beta_{ij} = 0$, $\gamma_{ij} = 0$ $(i, j = 1, 2, \cdots , N)$，即得一般的高斯-牛顿法。

当取

\[
\beta_{ij} = \begin{cases} \omega^{2}, & i = j, \\ 0, & i \neq j, \end{cases} \quad \gamma_{ij} = 0 \quad (i, j = 1, 2, \cdots , N),
\]

即得麦克脱方法（阻尼最小二乘法，ω 为阻尼因子）。

当取

\[
\beta_{ij} = 0, \quad \gamma_{ij} = \begin{cases} -1, & i \neq j, \\ 0, & i = j, \end{cases} \quad (i, j = 1, 2, \cdots , N)
\]

此时方程组（4') 的系数矩阵变成对角形矩阵，其解可用矩阵运算而直接求出。

四、计算实例

上述的解法用于计算复杂的穆斯堡尔谱，效果是好的，现列举三个实例如下：

例 1. 为考察 Pt-Sn/Al₂O₃ 重整催化剂中锡的形态。用本方法对由共沉淀法制备的 Pt-Sn/Al₂O₃、Pt/Al₂O₃ 催化剂在还原前测得的穆斯堡尔谱进行拟合计算，有效地分辨出五个吸收峰。结果*列于图 1。

例 2. 与上例同样的目的。但重整催化剂 Pt-Sn/Al₂O₃、Pt/Al₂O₃ 是用共浸法制备并还原后的。用本方法拟合计算所得的穆斯堡尔谱，分辨出 11 个吸收峰。结果**列于图 2。

例 3. 为鉴定真伪是次火山岩的磁铁矿地质样品的矿物组成。用本方法计算所得的穆斯

* 此结果已发表于“1981 年全国穆斯堡尔谱学术会议”资料第 32 号。
** 此结果已发表于“石油炼制”，1981，1：43。

444 科 学 通 报 1982 年
图 1 Pt-118Sn/γ-Al2O3（共沉淀法）
催化剂室温穆斯堡尔谱
小点是实验数据，曲线是计算分辨出的谱线

图 2 Pt-118Sn/γ-Al2O3（共沉淀法）
催化剂室温穆斯堡尔谱
小点是实验数据，曲线是计算分辨出的谱线

图 3 磁铁矿地质样品的室温穆斯堡尔谱
小点是实验数据，曲线是计算分辨出的谱线

致谢：本工作得到南京大学夏元复同志、南京化工学院杨南如同志和南京地质矿物研究所陈维范同志的指导和帮助，特此致谢。

参考文献

[1] 夏元复，穆斯堡尔谱学，江苏科技出版社，1980。
[3] 南京大学计算数学专业，最优化方法，科学出版社，1978。

第 7 期 科学通报 445