甲基三环萜烷与甲基四环萜烷的鉴定及其生源意义

王铁冠 盛国英 陈军红 傅家谟

(江苏石油学院，湖北荆州 434002)
(中国科学院地质研究所，广州 510640)

关键词 甲基三环萜烷、甲基四环萜烷、生物标志物、微生物生源输入

迄今带长侧链的环状萜类生物标志物中，无论双环的补身烷系列，还是五环的藿烷系列，均发现具有 C-3 或 C-2 位甲基取代的对应同系列。尽管对长侧链三环萜烷和四环萜烷系列的报道已有 20 年之久，而且对三环萜烷的同系物和异构体和芳构化合物的发现陆续有所闻，但是始终未见有关其甲基取代产物的报道。

本文报道作者在水城大河边煤矿上二叠统平梁煤系第 18 煤层蒸煤夹层煤样中，对甲基取代的三环萜烷与四环萜烷系列的鉴定，并探讨其生源意义。

1 实 验

蒸煤样品粉碎至 120 目后，缩分 25g 用二氟甲烷抽提。抽提物经柱色谱分离出饱和烃馏分，饱和烃馏分在菲尼根 TFQ-45 型 GC/MS/MS/DS 系统上作全扫描分析，采用 SE-54 毛细色谱柱（30 m × 0.25 mm i.d.），程序升温从 100—220℃，4℃/min，220—300℃，2℃/min；以后又用配置 DB-5 毛细柱（25 m × 0.25 mm i.d.）的菲尼根 4000 型质色仪作多离子检测平行分析。

2 化合物鉴定

蒸煤饱和烃馏分中检出 C_{30}—C_{22} 甲基三环萜烷与 C_{25}—C_{22} 甲基四环萜烷两个新系列生物标志物，分别与 C_{19}—C_{12}（缺 C_{10}）三环萜烷系列和 C_{24}—C_{18} 四环萜烷系列共存（表 1 和图 1）。常规的 13β(H)、14α(H)-三环萜烷系列以及四环萜烷系列的质谱均呈现出 M/Z 191 基峰[1, 6]，而且前者经常伴随有一个 C_{19} 13α(H)-三环萜烷弱基体显示 M/Z 123 质谱峰[4, 7]。因此，图 1 中以 M/Z 191 和 123 质量色谱中水蒸气蒸煤中上述三环萜烷与四环萜烷的分布特征。正如图 2 所示，作者检测出两个新系列的同系物都具有 M/Z 205 质谱峰，与常规三环萜烷和四环萜烷的质谱峰（M/Z 191）相差 14 个原子质量单位，标志其分子骨架 A 环上额外具有一个甲基。图 1(c) 所示的两个新系列的分布，与图 1(b) 的常规三环萜烷系列和四环萜烷系列的分布，系统地呈现逐对应的关系，表明其间同系物基本分子骨架的相似性。据此判断这两个

1993-09-18 收稿，1993-12-28 改收改稿。
* 中国科学院有机地球化学国家重点实验室资助项目。
表 1 水城藏煤饱和烃中检出的三环和四环萜烯类生物标志物

<table>
<thead>
<tr>
<th>No.</th>
<th>化合物名称</th>
<th>分子式</th>
<th>分子量</th>
<th>MS 基峰 $^{b)}$ (M/Z)</th>
<th>GC $^{b)}$ (科瓦茨指数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C_{19} 13β(H)-三环萜烯 (No. 2 的异构体)</td>
<td>C_{19}H_{24}</td>
<td>262</td>
<td>123</td>
<td>1874</td>
</tr>
<tr>
<td>2</td>
<td>C_{19} 14α(H)-三环萜烯</td>
<td>C_{19}H_{24}</td>
<td>262</td>
<td>191</td>
<td>1936</td>
</tr>
<tr>
<td>3</td>
<td>C_{20} 甲基三环萜烯</td>
<td>C_{20}H_{26}</td>
<td>276</td>
<td>205</td>
<td>1961</td>
</tr>
<tr>
<td>4</td>
<td>C_{20} 13β(H), 14α(H)-三环萜烯</td>
<td>C_{20}H_{26}</td>
<td>276</td>
<td>191</td>
<td>2019</td>
</tr>
<tr>
<td>5</td>
<td>C_{21} 甲基三环萜烯</td>
<td>C_{21}H_{28}</td>
<td>290</td>
<td>205</td>
<td>2040</td>
</tr>
<tr>
<td>6</td>
<td>C_{21} 13β(H), 14α(H)-三环萜烯</td>
<td>C_{21}H_{28}</td>
<td>290</td>
<td>191</td>
<td>2169</td>
</tr>
<tr>
<td>7</td>
<td>C_{22} 甲基三环萜烯</td>
<td>C_{22}H_{30}</td>
<td>304</td>
<td>205</td>
<td>2188</td>
</tr>
<tr>
<td>8</td>
<td>C_{22} 13β(H), 14α(H)-三环萜烯</td>
<td>C_{22}H_{30}</td>
<td>318</td>
<td>191</td>
<td>2288</td>
</tr>
<tr>
<td>9</td>
<td>C_{23} 13β(H), 14α(H)-三环萜烯</td>
<td>C_{23}H_{32}</td>
<td>332</td>
<td>191</td>
<td>2341</td>
</tr>
<tr>
<td>10</td>
<td>C_{23} 13β(H), 14α(H)-三环萜烯</td>
<td>C_{23}H_{32}</td>
<td>346</td>
<td>191</td>
<td>2462</td>
</tr>
<tr>
<td>11</td>
<td>C_{24} 甲基三环萜烯</td>
<td>C_{24}H_{34}</td>
<td>350</td>
<td>191</td>
<td>2531</td>
</tr>
<tr>
<td>12</td>
<td>C_{24} 甲基四环萜烯</td>
<td>C_{24}H_{34}</td>
<td>344</td>
<td>205</td>
<td>2544</td>
</tr>
<tr>
<td>13</td>
<td>C_{25} 四环萜烯</td>
<td>C_{25}H_{36}</td>
<td>358</td>
<td>191</td>
<td>2609</td>
</tr>
<tr>
<td>14</td>
<td>C_{26} 甲基四环萜烯</td>
<td>C_{26}H_{38}</td>
<td>358</td>
<td>205</td>
<td>2617</td>
</tr>
<tr>
<td>15</td>
<td>C_{26} 四环萜烯</td>
<td>C_{26}H_{36}</td>
<td>358</td>
<td>191</td>
<td>2750</td>
</tr>
<tr>
<td>16</td>
<td>C_{27} 甲基四环萜烯</td>
<td>C_{27}H_{40}</td>
<td>372</td>
<td>205</td>
<td>2742</td>
</tr>
</tbody>
</table>

a) 化合物名称于图 1-2；b) 根据 GC/MS 分析各化合物的扫描数计算。

图 1 水城藏煤饱和烃分质量色谱图

(a) M/Z 123, 常规三环萜烯的异构体；(b) M/Z 191, 常规三环萜烯系列与四环萜烯系列；
(c) M/Z 205, 甲基三环萜烯系列与甲基四环萜烯系列。编号同表 1 和图 2
新系列分别为甲基三环萜烷系列和甲基四环萜烷系列。这两个新系列 A 环上单一甲基的确切取代位置尚有待进一步确定。但是，考虑到环状萜类 C-3 位上出现取代基团的普遍性，初步判定这两个新系列 A 环单一甲基的取代于 C-3 位上。就水成藻类而言，如图 1(b)、(c) 所示，二者化合物的相对丰度相差 7 倍以上，甲基三环萜烷系列丰度偏低，同系物分布范围也较窄，缺乏 C_{23} 同系物。表 1 中还提供了上述各系列同系物的气相色谱科瓦茨指数 (Kovats index)。

3 生源意义探讨

水成藻类的显微组分主要由腐泥组组组成，其中包括藻类体 (占 44.2%)、藻酵质体 (27.2%) 和次生藻质 (7.2%)，仅含有少量醇质体 (占 8.8%) 和孢子体 (8.5%)，指示其具有重要的藻类生物源物质来源。

该藻类的饱和烃分生物标志物标志物组合也以明显的微生物生源标志物为特征，例如 C_{21} 正烷烃、烷烃烷和 8、14-断藻烷系列、C_{29} 长链链类异戊二烯烃、单甲基支链烷烃、补身烷系列、三环和四环萜烷系列等。合计占全组分的 52.4%；而高等植物生源产物仅占 32.2%。

考虑到常规三环萜烷具有植物类生物生源，四环萜烷成因也与细菌起的藻烷类密切相关。与之相关的甲基三环萜烷和甲基四环萜烷也可能是微生物生源输入的产物。

参考文献