CaO–SrO–SiO$_2$–GeO$_2$

系统中环链结构转换的研究

温 树 林
(中国科学院上海硅酸盐研究所)

D. A. Jefferson J. M. Thomas
(英国剑桥大学物理化学系)

前 言

偏硅酸钙有硅灰石和假硅灰石两种结构，其中硅灰石为链状结构，假硅灰石为环状结构，转变温度为 1250°C。

当用 Sr$^{2+}$取代偏硅酸钙中的 Ca$^{2+}$时，产生环状结构21，与温度没有关系。

与此同时，用锗取代偏硅酸钙中的硅所生成的锗酸钙肯定是链状结构，与温度没有关系。但如果进行局部取代，并进一步对阴阳离子同时取代，结果将如何呢？关于用其它离子取代，我们也获得了有趣的结果21。这里只讨论 CaO–SrO–SiO$_2$–GeO$_2$ 系统。

实 验

采用化学纯的碳酸钙、碳酸锶、二氧化硅和二氧化锗在白金坩埚中用下述固体反应制备样品:

$$\text{CaCO}_3 + \text{SiO}_2 \rightarrow \text{CaSiO}_3 + \text{CO}_2, \quad (1)$$

$$\text{SrCO}_3 + \text{SiO}_2 \rightarrow \text{SrSiO}_3 + \text{CO}_2, \quad (2)$$

$$\text{SrCO}_3 + \text{GeO}_2 \rightarrow \text{SrGeO}_3 + \text{CO}_2, \quad (3)$$

$$\text{CaCO}_3 + \text{GeO}_2 \rightarrow \text{CaGeO}_3 + \text{CO}_2, \quad (4)$$

$$(1 - x)\text{CaCO}_3 + x\text{SrCO}_3 + \text{SiO}_2 \rightarrow (\text{Ca}_{1-x}\text{Sr}_x)\text{SiO}_3 + \text{CO}_2, \quad (5)$$

$$\text{CaCO}_3 + x\text{GeO}_2 + (1 - x)\text{SiO}_2 \rightarrow \text{Ca}(\text{Ge}_x\text{Si}_{1-x})\text{O}_3 + \text{CO}_2, \quad (6)$$

$$(1 - x)\text{CaCO}_3 + x\text{SrCO}_3 + \text{GeO}_2 \rightarrow (\text{Ca}_{1-x}\text{Sr}_x)\text{GeO}_3 + \text{CO}_2, \quad (7)$$

$$(1 - x)\text{CaCO}_3 + x\text{SrCO}_3 + y\text{GeO}_2 + (1 - y)\text{SiO}_2 \rightarrow (\text{Ca}_{1-x}\text{Sr}_x)(\text{Ge}_y\text{Si}_{1-y})\text{O}_3 + \text{CO}_2, \quad (8)$$

式中 x, y 为克分子分数。反应均在 1500°C 高温下的真空炉中进行。反应后将产物急速冷却，使成玻璃态。然后在 $950^\circ\text{C}, 1250^\circ\text{C}, 1300^\circ\text{C}$ 三个温度下退火 40 小时析出很好的晶态，即做样品加以研究。

研究使用 X-射线衍射技术和高分辨电子显微镜 JEM200CX，仪器附有 EDS 能谱仪，以
便进行微区成分分析。

结 果

图 1 示出两个主要产物的结构模型，其中 (a) 为硅灰石，(b) 为假硅灰石。前者为链状结构，后者为环状结构。

图 2 为硅灰石的晶格片。照片的中上方插入相应区域的结构模型，照片的右上角插入计算机模拟给出的原子势能分布图。与照片中相应区域比较可以清楚地看到，这是一幅结构象。

图 3 为假硅灰石晶格片。右上角插入相应区域的电子衍射图谱。

由于 JEM 200CX 电子显微镜的晶格分辨率为 1.4 Å，因此，对于晶面信息的了解是够的。而点分辨率为 2.6 Å，其结构象对于揭示硅氧四面体或锗氧四面体与氧离子（Ca⁴⁺，Sr⁴⁺）的相对关系也还是够的。从照片中可以看到硅氧四面体单链的走向与模型中的走向十分相符的情形。

由于 Sr⁴⁺ 取代 Ca⁴⁺ 后会引起晶胞尺寸少许地变大，锗氧四面体取代硅氧四面体亦会引起晶胞尺寸少许地变大，因此其相应晶面的衍射矢量值稍许减小，但衍射图案的指数化仍然不变，可以采用晶胞尺寸修正后的计算机程序给出的数据表。

这样，图 2 和图 3 就成了研究 CaO-SrO-Si₄-O₆-GeO₄ 化合物系列的标准图谱。

结 论

将本研究的主要结论列于表 1、2、3 和 4。表中阳离子 Ca⁴⁺ 和 Sr⁴⁺ 其半径分别取 0.99 Å

1248 科 学 通 报 1984 年

表 1 纯化合物阴阳离子半径比对结构类型的影响

<table>
<thead>
<tr>
<th>化合物</th>
<th>R_e^* (Å)</th>
<th>R_e^* (Å)</th>
<th>R_d/R_e</th>
<th>结构类型</th>
<th>结构类型</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>950℃</td>
<td>1250℃</td>
<td>1300℃</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaGeO₃</td>
<td>0.99</td>
<td>2.59</td>
<td>2.62</td>
<td>链状</td>
<td>链状</td>
</tr>
<tr>
<td>CaSiO₃</td>
<td>0.99</td>
<td>2.48</td>
<td>2.51</td>
<td>链状</td>
<td>链状</td>
</tr>
<tr>
<td>SrSiO₃</td>
<td>1.12</td>
<td>2.48</td>
<td>2.21</td>
<td>环状</td>
<td>环状</td>
</tr>
</tbody>
</table>

* R_e^* 表示阳离子半径，R_e^* 表示阴离子半径。

表 2 阳离子取代后阴阳离子半径比对结构类型的影响

<table>
<thead>
<tr>
<th>化合物</th>
<th>R_e^* (Å)</th>
<th>R_e^* (Å)</th>
<th>R_d/R_e</th>
<th>结构类型</th>
<th>结构类型</th>
<th>结构类型</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>950℃</td>
<td>1250℃</td>
<td>1300℃</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaSiO₃</td>
<td>0.990</td>
<td>2.48</td>
<td>2.51</td>
<td>链状</td>
<td>链状</td>
<td>环状</td>
</tr>
<tr>
<td>(Ca₉₋₅Sr₅Sr₉O₅)SiO₃</td>
<td>0.997</td>
<td>2.48</td>
<td>2.48</td>
<td>环状</td>
<td>环状</td>
<td>环状</td>
</tr>
<tr>
<td>(Ca₉₋₅Sr₅Sr₉O₅)SiO₃</td>
<td>1.016</td>
<td>2.48</td>
<td>2.44</td>
<td>环状</td>
<td>环状</td>
<td>环状</td>
</tr>
</tbody>
</table>

表 3 指出，用锗氧四面体取代硅氧四面体时，其 R_d/R_e 值等于 2.52 时，产物为环状两种结构（相变温度为 1250℃）；R_d/R_e 值高于 2.52 为链状结构；低于 2.52 为环状结构。

表 3 阳离子取代后阴阳离子半径比对结构类型的影响

<table>
<thead>
<tr>
<th>化合物</th>
<th>R_e^* (Å)</th>
<th>R_e^* (Å)</th>
<th>R_d/R_e</th>
<th>结构类型</th>
<th>结构类型</th>
<th>结构类型</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>950℃</td>
<td>1250℃</td>
<td>1300℃</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca(Ge₂Si₅O₁₃)O₃</td>
<td>0.99</td>
<td>2.50</td>
<td>2.52</td>
<td>链状</td>
<td>链状</td>
<td>环状</td>
</tr>
<tr>
<td>Ca(Ge₂Si₅O₁₃)O₃</td>
<td>0.99</td>
<td>2.52</td>
<td>2.55</td>
<td>链状</td>
<td>链状</td>
<td>链状</td>
</tr>
<tr>
<td>Ca(Ge₂Si₅O₁₃)O₃</td>
<td>0.99</td>
<td>2.55</td>
<td>2.57</td>
<td>链状</td>
<td>链状</td>
<td>链状</td>
</tr>
</tbody>
</table>

第20期 科学通报 1249
表 4 指出，在阳离子方面用 Sr²⁺ 取代 Ca²⁺，在阴离子集团方面，用锗氧四面体取代硅氧四面体，其 $R_e/R_ \alpha$ 值为 2.50 时，产物有环状和链状两种结构（相变温度为 1250℃）；R_α/R_e 低于 2.50 为环状结构；高于 2.50 时，但低于 2.52，低温为链状，高温为玻璃态；$R_e/R_\alpha = 2.52$ 以上全为链状结构。

<table>
<thead>
<tr>
<th>化合物</th>
<th>R_e (Å)</th>
<th>R_α (Å)</th>
<th>R_α/R_e</th>
<th>结构类型</th>
<th>温度</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(Ca_{x}Sr_{y}){Ge_{x}Si_{y}}O_z$</td>
<td>1.016</td>
<td>2.52</td>
<td>2.48</td>
<td>环状</td>
<td>950℃</td>
</tr>
<tr>
<td>$(Ca_{x}Sr_{y}){Ge_{x}Si_{y}}O_z$</td>
<td>1.016</td>
<td>2.54</td>
<td>2.50</td>
<td>链状</td>
<td>1250℃</td>
</tr>
<tr>
<td>$(Ca_{x}Sr_{y}){Ge_{x}Si_{y}}O_z$</td>
<td>1.016</td>
<td>2.55</td>
<td>2.51</td>
<td>链状</td>
<td>1300℃</td>
</tr>
<tr>
<td>$(Ca_{x}Sr_{y}){Ge_{x}Si_{y}}O_z$</td>
<td>1.016</td>
<td>2.57</td>
<td>2.53</td>
<td>链状</td>
<td></td>
</tr>
</tbody>
</table>

参考文献